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Notation

:= defining equality 1(E) indicator of set/condition E

P probability E closure of set E

E expectation B(E) class of Borel subsets of E

↘ approach from above span(E) linear span of vectors in E

↗ approach from below det(A) determinant of matrix A

(·)+ max{·, 0} diag(a) diagonal matrix with elements of
vector a on major diagonal

(·)− max{−·, 0} A′ transpose of matrix A

N natural numbers 0n n× 1 vector of zeroes

R>0 [0,∞) ⊂ R 1n n× 1 vector of ones

R>0 (0,∞) ⊂ R In n× n identity matrix

MVN multivariate normal distribution

L2 Hilbert space of square-integrable
random variables

∂kx partial derivative ∂k

∂xk
Γ(·) gamma function

δx Dirac delta function at x B(·, ·) beta function

δij Kronecker’s delta (a)k Pochhammer symbol

2F1 Gauss hypergeometric function 2F1(a, b, c, z) :=
∞∑
k=0

(a)k(b)k
(c)k

zk

k!

∗
BH
t the Mandelbrot-van Ness representation of fBm

B̂H
t the Molchan-Golosov representation of fBm

B
H
t the Muravlev representation of fBm

B̃H
t Kolmogorov’s spectral representation of fBm

iv



Chapter 1

Introduction

Fractional Brownian motion (fBm) is a generalisation of the standard Brownian
motion (Bm) to accommodate particular structures of dependency between disjoint
increments. First described by Kolmogorov in 1940, fBm and its discrete analog,
fractional Gaussian noise (fGn), are now widely used to model time series or spatial
data that exhibit fractal properties. They and derivative processes have been used
in bioengineering to model regional blood flow distributions in the heart, lungs and
kidneys [2], in communication theory to model the arrivals of network packets [8], in
hydrology to model water levels in rivers [31] and the hydraulic conductivity of soils
[41], in finance to model the prices of financial instruments [6], in genetics to model
stochastic gene expression [35] and DNA walks [1], in Bayesian machine learning to
induce a prior distribution on the function space of regression curves [59], in computer
graphics to generate natural-looking clouds, terrain and cellular noise [15], in soft
matter physics to describe diffusion in crowded fluids [12], and in fluid dynamics to
model the phase discrepancies along a turbulent wave-front [48].

Despite this breadth of applications, the analytical methods available for com-
puting statistics of fBm models are limited by the fact that the process is neither
Markov nor a semimartingale. A pool of structurally varied representations thus
serves as an important resource. Representations of fBm in terms of the more familiar
standard Brownian motion have been used to prove its existence, derive properties of
sample paths, propose simulation and approximation algorithms [8], develop theories
of stochastic integration with respect to fBm [7, 37], and facilitate various statistical
results [43, 26]. In this thesis, two existing time domain integral representations of
fBm are investigated.

First, the derivation of the Muravlev representation is presented in detail, and
properties of the infinite-dimensional Ornstein-Uhlenbeck process appearing in its
integrand are investigated, including the Markov property and the smoothness of its
sample surfaces in the spatial direction. The means by which long-range dependence
arises in an integral over short-range dependent processes is also discussed.

Second, geometric intuition for the Molchan-Golosov representation is developed,
which can be viewed as a contortion of the helix formed by fBm in the Hilbert space
of square-integrable random variables. In the discrete-time case, this geometric trans-
formation is shown to be equivalent (in a sense made precise) to the premultiplication
of a multivariate Gaussian vector consisting of fBm increments by a lower triangular
matrix constructed via Cholesky factors. As the size of the mesh on which the fBm

1



2

is discretised shrinks to zero, this finite-dimensional linear transformation is shown
numerically to approach the Molchan-Golosov integral transformation.

The thesis has four main chapters. Chapter 2 outlines requisite background
theory, including a construction of Itô integration on the half line. Chapter 3
summarises the literature on fBm representations. The Muravlev and Molchan-
Golosov representations are discussed in Chapters 4 and 5, respectively. To close,
some concluding remarks are made in Chapter 6.



Chapter 2

Preliminaries

2.1 The space L2

The set of square-integrable random variables on a given probability space forms a
Hilbert space. This perspective can sometimes provide useful geometric intuition for
otherwise purely probabilistic arguments.

Formally, let (Ω,F ,P) be a probability space. Denote by L2(Ω,F ,P) — or
simply L2 when the particulars of the underlying probability space are not relevant —
the tuple (V, 〈·, ·〉L2), where

V :=
{
X : Ω→ R | E[X2] <∞

}
/

a.s.=

is the set of equivalence classes of almost surely equal random variables with finite
second moments. In practice, we usually refer to the elements of L2 as being random
variables, rather than the strictly correct equivalence classes. Denoting by [X] the
equivalence class of random variables almost surely equal to X, the inner product
and norm on L2 are defined as follows:

〈[X], [Y ]〉L2 := EXY, ‖[X]‖L2 :=
√
〈[X], [X]〉L2 =

√
E{X2}.

The space L2(Ω,F ,P) is complete and thus forms a Hilbert space.

2.2 Process properties
In this section a number of distributional properties of stochastic processes are
introduced.

Self-similarity
The following definition is modelled on that given in [52, Def 2.5.1].
Definition 2.1 (self-similarity). A stochastic process (Xt)t∈R is called self-similar if
there exists H > 0 such that, for all a > 0,

(Xat)t∈R d= (aHXt)t∈R

where, when equating processes, d= denotes equality of the finite-dimensional distri-
butions. The term H-self-similar is also used to refer to such a process.
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4 process properties

Self-similar processes are important because, among other properties, they arise
as the natural limits in functional central limit theorems, analogous to the role that
stable distributions play in one-dimensional central limit theorems [28].

Stationarity of increments
The following two notions are standard; these definitions follow [9, p.99] with a slight
modification of terminology.

Definition 2.2 (strictly stationary increments). A stochastic process (Xt)t>0 has
strictly stationary increments if, for any h > 0,

(Xt+h −Xh)t>0
d= (Xt −X0)t>0.

Definition 2.3 (weakly stationary increments). A stochastic process (Xt)t>0 has
weakly stationary increments if, for any s, t > 0, E[(Xt−Xs)2] depends only on |t−s|.

Long-range dependence
There are at least five distinct definitions of long-range dependence used in the
literature, see [52, Ch. 2] for a comprehensive survey. Here, we define long-range
dependence of a weakly stationary process to be a property of its autocovariance
function. The autocovariance function of discrete-time, weakly stationary process
(Xn)n∈N is the function γX defined by

γX(n) := EXn+1X1 − EXn+1EX1, n ∈ N.

Definition 2.4 (long-range dependence). A discrete-time process (Xn)n∈N is long-
range dependent if its autocovariances are not absolutely summable. That is, if the
series ∞∑

k=1
|γX(k)|

diverges. A process is short-range dependent if it is not long-range dependent.

This is the third definition from [52, Ch. 2]. Note that saying a process is long-
range dependent is not merely saying that there exist non-zero covariances between
random variables in the sequence separated by arbitrarily large time intervals, but
that the magnitude of such covariances decay sufficiently slowly as the length of the
intervening time interval increases.

For our purposes, we will say a continuous-time, weakly stationary process
(Xt)t∈R>0 is long-range dependent if the discrete-time process (Xn − Xn−1)n∈N of
its increments is long-range dependent. If Xt is a continuous-time process, the no-
tation γX will refer to the autocovariance function of its corresponding increment
process.

Long-range dependent processes and self-similar processes are related. Specifically,
if (Xt)t∈R>0 is H-self-similar for some H ∈ (1/2, 1) with strictly stationary increments,
then (Xn −Xn−1)n∈N will be long-range dependent [52, Prop. 2.8.1].
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Markovity
In qualitative terms, a Markov process (or a process that has the Markov property) is
one for which the distribution of the future trajectory of the process given its history
up to time t depends only on the value of the process at time t. To make this notion
sufficiently precise for our purposes, we use a simplified version of the definition given
by Gikhman and Skorohod [27, Ch. 1 §3]. Let

− (Ω,F) be a measurable space (the sample space) equipped with a family
{Ft | t ∈ R>0} (or just Ft) of sub-σ-algebras of F such that if s 6 t then
Fs ⊆ Ft (a filtration);

− (Ξ, E) be another measurable space (the space in which the process takes its
values);

− X : R>0 × Ω→ Ξ be a function (the process); and

− {Ps,x | s ∈ R>0, x ∈ Ξ} (or just Ps,x) be a collection of probability measures on
the σ-algebra generated by ∪t>sFt.

Definition 2.5 (Markov process). The triple (Xt,Ft, Ps,x) is called a Markov process
if it satisfies the following properties:

M1 For all t ∈ R>0, the map Xt : Ω→ Ξ which takes ω 7→ X(t, ω) is Ft-measurable.

M2 For all E ∈ E and s, t ∈ R>0 such that s 6 t, the function x 7→ Ps,x({Xt ∈ E})
is E-measurable.

M3 For all x ∈ Ξ and s ∈ R>0, Ps,x({Xs ∈ Ξ \ x}) = 0.

M4 (Markov property) For all x ∈ Ξ, E ∈ E and r, s, t ∈ R>0 such that r 6 s 6 t,
the probability Pr,x({Xt ∈ E|Fs}) = Ps,Xs({Xt ∈ E}).

Semimartingale
Definition 2.6 (semimartingale). A stochastic process (Xt)t>0 is a semimartingale
if there exists a decomposition

Xt = Mt + At,

where (Mt)t>0 is a local martingale, and (At)t>0 is a cádlág adapted process with
locally bounded variation.

Semimartingales are important because they are the broadest family of processes
with respect to which Itô integrals, introduced in Section 2.4, can be constructed (see
[53] for the general theory).



6 fractional brownian motion

Gaussianity
Definition 2.7 (Gaussian process). A Gaussian process is a stochastic process for
which all the finite-dimensional distributions are (multivariate) Gaussian.

Gaussian processes can be convenient to work with because they are uniquely
specified by their mean and covariance functions. Two key examples will appear
frequently in this thesis.

− The standard Brownian motion (Bm) on the half line is a mean-zero Gaussian
process (Bt)t∈R>0 with covariance function given by:

E[BsBt] = min{s, t} for s, t ∈ R>0.

Disjoint increments of a standard Bm are independent, and the sample paths of
the process can be constructed to be (surely) continuous. Often we will make
use of a Bm on the real line, which is a stochastic process (Bt)t∈R constructed
by

Bt :=
B1

t , if t > 0,
B2
−t, if t < 0

,

where (B1
t )t∈R>0 , (B2

t )t∈R>0 are independent standard Brownian motions on the
half line.

− The Ornstein-Uhlenbeck process is, for any β ∈ R>0, a mean-zero Gaussian
process (Zβ

t )t∈R>0 with covariance function given by:

E[Zβ
s Z

β
t ] = 1

2β e
−β(t−s) for s, t ∈ R>0, s 6 t.

The above definitions are standard but and be found, for instance, in [52, Sec. 1.1.1].
Both processes can have their parameter sets truncated to bounded intervals without
unexpected consequences.

2.3 Fractional Brownian motion
The focus of this thesis is another family of Gaussian processes.

Definition 2.8 (fractional Brownian motion). For any H ∈ (0, 1], the fractional
Brownian motion with Hurst parameter H (H-fBm) is defined to be a mean-zero
Gaussian process BH

t = (BH
t )t>0 with covariance function given by:

E[BH
s B

H
t ] = 1

2(s2H + t2H − |s− t|2H) for all s, t ∈ R>0. (2.1)

The covariance function can indirectly but more elegantly be specified by setting
BH

0 := 0 and, for s, t > 0, ‖BH
t −BH

s ‖L2 := |t− s|H .
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Figure 2.1: Simulated sample paths of fractional Brownian motions at particular Hurst
parameters. Each path is simulated on a grid of time parameters, t = 0.001k for k ∈ N61000.

The Hurst parameter H ∈ (0, 1] controls the correlation of disjoint increments,
which is positive for H ∈ (1/2, 1] and negative for H ∈ (0, 1/2). At H = 1/2, the process
is the standard Brownian motion Bt with independent increments. Sample fBm paths
for a range of Hurst parameters are shown in Figure 2.1.

When H = 1, the process trajectory is a straight line with random slope—
namely, BH

t = tBH
1 almost surely. As H ↘ 0, the process converges in the sense

of convergence of finite-dimensional distributions to a white noise process with
random initial displacement. Specifically, if (Wt)t∈R>0 is a stochastic process for
which each Wt is an independent standard normal random variable, then as H ↘ 0
the finite-dimensional distributions of (BH

t )t∈R>0 converge to those of the process
((Wt −W0)/

√
2)t∈R>0 . This fact was proved in [3, Sec. 4].

Several key properties of fBm are stated below.

Proposition 2.1. The process (BH
t )t>0 is H-self-similar.

Proof. For any a > 0, the processes (BH
at)t>0 and (aHBH

t )t>0 are both mean-zero,
Gaussian. Moreover, they have identical coveriance functions, because for s, t > 0,

EBH
asB

H
at = 1

2
(
(at)2H + (as)2H − |at− as|2H

)
= a2H

2 (t2H + s2H − |t− s|2H) = E(aHBH
t )(aHBH

s ).

Gaussian processes are fully specified by their mean and covariance functions, so
(BH

at)t>0
d= (aHBH

t )t>0 and, thus, (BH
t )t∈R>0 is H-self-similar.

Proposition 2.2. The process (BH
t )t>0 has strictly stationary increments.
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Proof. Since the process is Gaussian, the distribution of each increment is fully
described by its mean and covariance, so it is sufficient to note that for any h > 0
and t ∈ R>0, the mean E[BH

t+h −BH
h ] = 0 and the variance

E[(BH
t+h −BH

h )2] = |t+ h− h|2H = |t|2H

are both independent of h.

These above two properties provide an alternative characterisation of an H-
fBm which, up to a multiplicative constant, is the only Gaussian process which is
H-self-similar and has stationary increments (see [52, Def. 2.6.2]).

Proposition 2.3. (BH
t )t>0 is long-range dependent if and only if H ∈ (1/2, 1].

The following proof is modelled on that in [21, Lem. 2.4].

Proof. Using the covariance function (2.1) of an H-fBm, we see that the autocovari-
ance function of its increment process is

γBH (n) = E[(BH
n+1 −BH

n )(BH
1 −BH

0 )]

= 1
2
[
(n+ 1)2H − n2H −

(
n2H − (n− 1)2H

)]
, for n ∈ N.

By applying the mean value theorem twice, γBH can be shown to have the form

γBH (n) = H(2H − 1)(n+ θH,n)2H−2 for n ∈ N,

where θH,n ∈ (−1, 1) for all possible H, n. Thus, the absolute sum of the autocovari-
ances can be bounded as follows:

∞∑
n=1
|γBH (n)|


6 H|2H − 1|

(
(1 + θ1,H)2H−2 +

∞∑
n=1

n2H−2
)
, if H ∈ (0, 1/2),

> H|2H − 1|
∞∑
n=2

n2H−2, if H ∈ (1/2, 1].

The p-series on the right-hand side converge and diverge respectively for the cases
H ∈ (0, 1/2) and H ∈ (1/2, 1], so an H-fBm is long-range dependent if and only
if H ∈ (1/2, 1].

Proposition 2.4. If H 6= 1/2, then (BH
t )t>0 is not a Markov process.

Proposition 2.5. If H 6= 1/2, then (BH
t )t>0 is not a semimartingale.

The preceeding two properties often mean that, relative to standard Bm, com-
putations involving fBm with Hurst parameter H 6= 1/2 are typically more difficult.
Proofs of Lemmas 2.4 and 2.5 can be found in [46, Thm. 2.2, 2.3].

Details on the history of fBm literature can be found in [21, 37, 39, 56].
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2.4 Itô calculus
In this section the Itô integral on the half-line is constructed. The method used is a
generalisation of that given in [47, Ch. 3].

Fix t ∈ R. Take (Ω,F , {Fs}s∈(−∞,t],P) to be a filtered probability space. On top
of this underlying space, two additional spaces are built. The first is the Hilbert
space L2 = L2(Ω,F ,P) as defined in Section 2.1. The second is the inner product
space Y consisting of stochastic processes (Ys)s∈(−∞,t],

Ys : Ω→ R
ω 7→ Ys(ω)

such that the following three properties hold:

i. The map (s, ω) 7→ Ys(ω) is (B((−∞, t])×F)-measurable;

ii. The process (Ys)s∈(−∞,t] is Fs-adapted; and

iii. E
[∫ t

−∞
Y 2
s ds

]
<∞.

The inner product on Y is defined to be

〈Us, Vs〉Y :=
∫ t

−∞
E[UsVs] ds,

and the norm ‖Us‖Y := 〈Us, Us〉1/2Y . Let (Bs)s∈R be a standard Bm on the real line
with domain Ω, such that Bs is Fs-adapted and, for all s, t ∈ R>0 with s < t, the
increment Bt −Bs is independent of Fs. For all (Ys)s∈(−∞,t] ∈ Y we wish to define
the following integral:

I[Ys] :=
∫ t

−∞
Ys dBs .

Initially, we define the integral for simple processes.

Definition 2.9 (simple process). A stochastic process (Us)s∈(−∞,t] ∈ Y is simple if it
has the form

Us = X11(s = s1) +
N∑
i=1

Xi1(s ∈ (si, si+1]),

for some increasing sequence of times u = s1 < · · · < sN = v (where u, v ∈ (−∞, t]
and N ∈ N) and some sequence of random variables (Xi)Ni=1 such that Xi is Fsi-
measurable.

Let (Us)s∈(−∞,t] ∈ Y be a simple process as defined in Definition 2.9. The
Itô integral of (Us)s∈(−∞,t] is defined as follows:

∫ t

−∞
Us dBs =

∫ v

u
Us dBs :=

N∑
i=1

Xi(Bsi+1 −Bsi).
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Theorem 2.1 (Itô isometry for simple processes). If (Us)s∈(−∞,t] ∈ Y is simple, then
‖I[Us]‖L2 = ‖Us‖Y .

Proof. First, note that if ∆Bi := Bsi+1 −Bsi , then

E[XiXj∆Bi∆Bj] =
E[X2

i ](si+1 − si) i = j

0 i 6= j
. (2.2)

This is because ∆Bi is independent of Fsi . Thus

‖I[Us]‖2
L2 = E

[(∫ v

u
Us dBs

)2
]

= E

( N∑
i=1

Xi(Bsi+1 −Bsi)
)2

(2.2)=
N∑
i=1

E[X2
i ](si+1 − si) =

∫ v

u
E[U2

s ] ds

= E
[∫ v

u
U2
s ds

]
= ‖Us‖Y .

We can now proceed to construct the Itô integral for all Yt ∈ Y via two steps.

Step 1. Let Vs be an element of Y which is almost surely zero off a compact in-
terval [u, t] for some u ∈ (−∞, t). Then there exists a sequence of simple processes
(Un

s )∞n=1 such that Un
s → Vs in Y.

See [47, p.27] for the proof.

Step 2. Let Ys be an arbitrary element of Y. Then there exists a sequence of
processes (V n

s )∞n=1 almost surely zero off a compact interval (dependent on n) such
that V n

s → Ys in Y.

Proof. Choose V n
s := Ys1(s > −n). Then

‖Ys − V n
s ‖Y = E

[∫ t

−∞
(Ys − Ys1(s > u))2 ds

]
= E

[∫ t

−∞
Y 2
s 1(s < u) ds

]
= E

[∫ t

−∞
Y 2
s − Y 2

s 1(s > u) ds
]

= E
[∫ t

−∞
Y 2
s ds

]
− E

[∫ t

−∞
Y 2
s 1(s > u) ds

]
u→−∞−−−−→ 0,

because for u1 > u2,

0 6
∫ t

−∞
Y 2
s 1(s > u1) ds 6

∫ t

−∞
Y 2
s 1(s > u2) ds 6

∫ t

−∞
Y 2
s ds a.s.,

and so as u→ −∞,

E
[∫ t

−∞
Y 2
s 1(s > u) ds

]
→ E

[∫ t

−∞
Y 2
s ds

]
,

by the monotone convergence theorem.
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Definition 2.10 (Itô integral). Let Ys be an arbitrary element of Y. Choose, via
Steps 1 and 2, a sequence of simple processes (Un

s )∞n=1 such that Un
s → Ys in Y . Then

define ∫ t

−∞
Ys dBs := lim

n→∞

∫ t

−∞
Un
s dBs (2.3)

where the limit is taken in L2.

The limit exists because the sequence (Un
s )∞n=1 converges in Y , so is Cauchy. The

Itô isometry (Theorem 2.1) implies that the sequence of Itô integrals in (2.3) is also
Cauchy in the Hilbert space L2, so converges to a limit in L2.

The Itô isometry also extends to the general case.

Theorem 2.2 (Itô isometry). If Ys ∈ Y, then ‖I[Ys]‖L2 = ‖Ys‖Y .

For a process (Xt)t∈R that satisfies

Xt −Xu =
∫ t

u
µ(s) ds+

∫ t

u
σ(s) dBs, for all u ∈ R6t ∪ {−∞},

where µ, σ are stochastic processes sufficiently well-behaved for the integrals to exist,
it is standard in stochastic calculus to adopt the shorthand differential form

dXt = µ(t) dt+σ(t) dBt .

An important example for this thesis is the previously-introduced Ornstein-
Uhlenbeck process (Zβ

t )t∈R, which satisifies the so-called Langevin stochastic differen-
tial equation:

dZβ
t = −βZβ

t dt+ dBt .

This form makes plain that the Ornstein-Uhlenbeck process is similar to a standard
Bm but has an extra ‘mean-reverting’ term −βZβ

t dt which manifests as a tendency for
the process to return to zero. The strength of the tendency increases proportionally
to the amount by which the process deviates from zero.

Later, we will also require the following standard result.

Theorem 2.3 (Itô formula). Let (Xt)t∈R be a stochastic process satisfying

dXt = µ(t) dt+σ(t) dBt,

and let g(t, x) : R2 → R be a function that is twice continuously differentiable in x
and once continuously differentiable in t. Then if Yt := g(t,Xt), the process (Yt)t∈R
satisfies the formula

dYt = ∂tg(t,Xt) dt+∂xg(t,Xt) dXt +1
2∂

2
xg(t,Xt)(dXt)2,

where (dXt)2 = dXt · dXt is computed according to the rules

dt · dt = dt · dBt = 0, and dBt · dBt = dt .

A proof can be found in [47, Thm. 4.1.2].



Chapter 3

Literature review

There are a number of known representations of fBm in terms of other processes,
most commonly standard Brownian motion via an Itô integral. This chapter is a non-
exhaustive review of the most prominent, their connections to other representations,
and some applications.

3.1 Representations

3.1.1 Time domain

Mandelbrot-van Ness

The following representation was introduced in the seminal 1968 paper of Mandelbrot
and van Ness [30, Def. 2.1].

Theorem 3.1 (Mandelbrot-van Ness representation). Let H ∈ (0, 1) and (Bt)t∈R be
a standard Bm on the real line. If

∗
BH
t := ∗

cH

∫
R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dBs, (3.1)

where (·)+ = max{·, 0} and the constant

∗
cH =

(∫ ∞
0

(
(1 + s)H−1/2 − sH−1/2

)2
ds+ 1

2H

)− 1
2

= [Γ(2H + 1) sin(πH)] 1
2

Γ(H + 1/2) ,

then (
∗
BH
t )t∈R>0 is an H-fBm.

See [46, Prop. 2.3] for a proof. The name fractional Brownian motion was coined
by Mandelbrot and van Ness as a result of this integral representation, the integrand
of which can be expressed as a fractional integral. See [50] and [21, Ch. 4] for an
introduction to fractional calculus and its connections with fBm.

Remark. Note that the constant ∗cH quoted here is different from that given in [30],
which results in a similar process with a covariance function which differs from (2.1)
by a constant factor. See [37, App. A] for a computation of the correct constant.

12
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Theorem 3.1 is sometimes referred to as a ‘moving average’ representation because
it specifies the value BH

t as a weighted average over the process (Bs)s6t, with the
integrand determining the weight given to different regions of the standard Bm driver.
Figure 3.1 shows how the weights vary in H and s.

In econometrics, the process given by (3.1) is known as Type I fBm [32]. So-called
Type II fBm is a different but related process given by discarding part of the integrand
in (3.1), more commonly known as Riemann-Liouville type fBm [30, Ch. 2].
connections. Several generalisations of the Mandelbrot-van Ness (MvN) repre-
sentation are known, revealing that it is one of a class of structurally similar in-
tegral representations of fBm. For example, it is noted in [55, Eq. 7.2.7] that for
(·)− = max{−·, 0} and any a, b ∈ R,∫

R

[
a
(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
+ b

(
(t− s)H−1/2

− − (−s)H−1/2
−

)]
dBs (3.2)

specifies an H-fBm up to a multiplicative constant. A similar generalisation in terms
of cusp functions is given in [26]. Additionally, Jost [20, Remark 5.10] points out
that truncating the lower terminal of integration to some finite value does not alter
the covariance of the representation. While it is clear that (3.1) is not a structurally
unique representation, it is shown in [16] that for H ∈ [1/2, 1) and φ falling within a
particular class of functions, it is the only integral of the form∫

R
(φ(t− s)− φ(s)) dBs

that specifies an H-fBm.
Additionally, the Mandelbrot-van Ness representation has been generalised to a

transformation formula, see (3.7).
The Muravlev representation (3.5) is derived from the Mandelbrot-van Ness

representation.
applications. In addition to serving as a starting point for the derivation of other
representations as outlined above, the Mandelbrot-van Ness representation is used in
the definition of Wiener integration with respect to fBm [37, Ch. 1.6].

Molchan-Golosov

The following representation is widely useful because it represents an H-fBm as a
stochastic integral over the compact interval [0, t].
Theorem 3.2 (Molchan-Golosov representation). Let H ∈ (0, 1), and (Bt)t∈R>0 be a
standard Bm. If

B̂H
t := ĉH

∫ t

0
(t− s)H−1/2

2F1

(
1/2−H,H − 1/2, H + 1/2,

s− t
s

)
dBs, (3.3)

where 2F1 is the Gauss hypergeometric function and the constant

ĉH = [Γ(2H + 1) sin(πH)] 1
2

Γ(H + 1/2) ,

then (B̂H
t )t∈R>0 is an H-fBm.
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Figure 3.1: The integrand ∗
cH
(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
appearing in the Mandelbrot-van

Ness representation of an H-fBm for fixed t = 1, evaluated on a grid: es−t = 0.01+0.02(k−1)
for k ∈ N650, and H = 0.01 + 0.02(k − 1), for k ∈ N650. Note the discontinuity at s = 0.
In the case of H = 1/2, the integrand is equal to 1(s > 0) (the red line), reducing the
stochastic integral to its standard Bm driver. The peak near (s,H) = (t, 0) corresponds to
the increased roughness of the sample paths as H ↘ 0, and the trough near (s,H) = (0, 0)
corresponds to the random initial displacement of the white noise process which arises in
the limit as H ↘ 0.
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Figure 3.2: The integrand ĉH(t− s)H−1/2
2F1(1/2−H,H − 1/2, H + 1/2, (s− t)/s) appearing

in the Molchan-Golosov representation of an H-fBm for fixed t = 1, evaluated on a grid:
s = 0.01 + 0.02(k − 1) for k ∈ N650, and H = 0.01 + 0.02(k − 1), for k ∈ N650. In the case
of H = 1/2, the integrand is identically 1, reducing the stochastic integral to its standard
Bm driver. The peaks near (s,H) = (t, 0) and (s,H) = (0, 0) have the same interpretations
as the corresponding extrema in Figure 3.1. The additional peak near (s,H) = (0, 1)
corresponds to the long-range dependence of the process when H ∈ (1/2, 1).
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Several sources imply the representation follows from the 1969 work of Molchan
and Golosov [40], but a much clearer proof is given in [21, Thm. 3.1]. In [45], the
representation is derived for the case H ∈ (1/2, 1) via an elementary approach.

Note that the expression for the constant ĉH given here differs from that given in
[21, Lem. 3.2], in order to emphasise that ĉH = ∗

cH , the constant from the Mandelbrot-
van Ness representation. The expression used in [21, Lem. 3.2] can be obtained using
the reflection relation

Γ(1− z)Γ(z) = π

sin(πz) , if z ∈ C \ Z60,

and the Legendre duplication formula

Γ(z)Γ(z + 1/2) = 21−2z√πΓ(2z), if z ∈ C \ Z60.

These can respectively be found, for example, in [58, (1)] and [57, (50)].
As for the Mandelbrot-van Ness representation, the Molchan-Golosov represen-

tation can be thought of as a moving average and visualising the integrand in (3.3)
provides some intuition for how the moving average weights different regions of the
standard Bm driver to obtain an H-fBm. The integrand is plotted in Figure 3.2.

The dependence of the integrand on t implies fBm is not an Itô process, but it is
a Volterra process, a term applied to stochastic processes that have the form∫ t

0
f(s, t) dBs,

for some deterministic function f such that the integral exists. A concise introduction
to Volterra processes can be found in [21, Ch. 6].

That such a finite-time interval representation of fBm exists, follows from the
fact that fBm is the simplest example of a Hermite process, as it is known that all
Hermite processes have finite time interval representations. See [51, Thm. 1.1] for
the definition of a Hermite process and general formulae for such representations.
connections. The Mandelbrot-van Ness representation can be derived as a boundary
case of an appropriately time-shifted Molchan-Golosov transformation formula (see
Theorem 3.6). The proof, however, is quite involved — see [22] for details.

The Molchan-Golosov representation has also been generalised to a transformation
formula, see Theorem 3.6.
applications. Jost [21, Rem. 3.3] provides a concise summary of the numerous
results for fBm which are based on the Molchan-Golosov representation, which include
a Girsanov fomula [45, Thm. 4.1], a Lévy characterisation [38], and a prediction
formula [50, Ch. 8]. It is also used to define a stochastic integral with respect to fBm
via Malliavin calculus [7].

Muravlev

The following representation is much more recent. Partial results for the cases
H ∈ (0, 1/2) and H ∈ (1/2, 1) were published in [4] and [5, Sec. 2], respectively, in the
late 1990s. The version stated here appeared in 2011 [43, Cor. 1], and was obtained
by Muravlev without knowledge of the earlier work.
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Theorem 3.3 (Muravlev representation). Let H ∈ (0, 1/2) ∪ (1/2, 1) and (Bt)t∈R be
a standard Bm on the real line. For each β ∈ R>0, let (Zβ

t )t∈R>0 be the Ornstein-
Uhlenbeck process given by the following expression

Zβ
t = e−βt

∫ t

−∞
eβs dBs . (3.4)

If

B
H

t =


cH

∫ ∞
0

β−
1/2−H(Zβ

t − Zβ
0 ) dβ, if H ∈ (0, 1/2) ,

cH

∫ ∞
0

β−
1/2−H(Zβ

t − Zβ
0 −Bt) dβ, if H ∈ (1/2, 1) ,

(3.5)

where the constant
cH = [Γ(2H + 1) sin(πH)]1/2

B(1/2 +H, 1/2−H) ,

then (BH
t )t∈R>0 is an H-fBm.

The representation can be derived from the Mandelbrot-van Ness representa-
tion [43]. A direct computation of the covariance function does not appear to have
been published.

Note that in [43, Cor. 1], Muravlev uses an equivalent specification of (Zβ
t )t∈R>0 ,

namely:
Zβ
t = e−βtξβ + e−βt

∫ t

0
eβs dBs,

where (ξβ)β∈R>0 is a mean-zero Gaussian process independent of (Bt)t∈R>0 , with
covariance function Eξαξβ = (α + β)−1. This form is easily derived from (3.4) by
setting

ξβ :=
∫ 0

−∞
eβs dBs .

connections. The derivation of (3.5) from the Mandelbrot-van Ness representation
is presented in detail in Section 4.1 of this thesis.

In the course of his derivation, Muravlev obtained a related representation with
a single expression that works for all H ∈ (0, 1/2) ∪ (1/2, 1). For arbitrary ε > 0, the
process

cH

∫ ∞
0

(
β−

1/2−H(Zβ
t )− Zβ

0 − e−βε0Bt

)
dβ+εBt,

where the constant

ε0 =
(

ε

cHΓ(1/2−H)

)1/(H−1/2)

,

specifies an H-fBm for t ∈ [0,∞).
The appeal of the Muravlev representation is that the function-valued process

(Z ·
t)t∈R>0 is a Markov process (see Section 4.2.2), and thus it provides an avenue

through which some known theoretical tools for Markov processes can be applied to
fBm. However, Harms and Stefanovits point out in [18, Rem. 3.6] that, contrary to
a claim made by Muravlev, (3.5) cannot be described as a linear functional of an
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infinite-dimensional Markov process, because (Z ·
t −Bt)t∈R>0 is not Markov. In [18,

Thm. 3.5] they present an updated representation with more symmetric cases which
is a linear functional of a Markov process. Up to a constant factor, it has the form

∫ ∞
0

β−
1/2−H(Zβ

t − Zβ
0 ) dβ, if H ∈ (0, 1/2),∫ ∞

0
β

1/2−H(Y β
t − Y β

0 ) dβ, if H ∈ (1/2, 1),

where, for each β ∈ R>0, the process (Y β
t )t∈R>0 is related to (Zβ

t )t∈R>0 via the following
stochastic differential equation:

dY β
t = −βY β

t dt+Zβ
t dt .

applications. The Muravlev representation and its relatives have been used to
obtain bounds on the expected value of an fBm at a (general) stopping time in terms of
the mean of the stopping time [43, Thm. 2], to prove a conjectured inequality involving
the maximum of an fBm [60, Thm 2.1], and to propose competitively-performing
fBm approximation schemes [17].

0 1/2 1

−0.2
0

0.2
0.4
0.6
0.8

1

H

Mandelbrot-van Ness
& Molchan-Golosov

∗
cH = ĉH

0 1/2 1
H

Muravlev

cH

0 1/2 1
H

Spectral

c̃H

Figure 3.3: The constants in each of the four main representations described, plotted as
functions of the Hurst parameter H. Excluding the three points indicated, values are
defined on H ∈ [0, 1].

3.1.2 Spectral domain
In the first of his two 1940 papers, Kolmogorov presented a spectral representation
for fBm [24], albeit in a more general context and not under that name. The version
presented here is less abstract.
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Theorem 3.4 (spectral representation). Let H ∈ (0, 1/2) ∪ (1/2, 1), and (Bt)t∈R be a
standard Bm on the real line. If

B̃H
t = c̃H

(∫ 0

−∞

1− cos(st)
|s|H+1/2

dBs +
∫ ∞

0

sin(st)
|s|H+1/2

dBs

)
, (3.6)

where the constant

c̃H =
(

2
∫ ∞

0

1− cos s
s2H+1 ds

)− 1
2

= [−2Γ(−2H) cos(πH)]−
1
2 ,

then (B̃H
t )t∈R>0 is an H-fBm.

See [46, Prop. 2.3] for the proof. Several effectively equivalent variations exist, in
particular some that define an fBm on the real line—see eg. [21, Thm. 3.6].
connections. The spectral representation can be related to the Mandelbrot-van
Ness representation via Parseval’s identity, see [21, Sec. 3.4] and [55, Sec. 7.2.2] for
details.

As was the case for the Mandelbrot-van Ness representation, the (3.6) is one of
a class of structurally similar representations. One such generalisation, analogous
to (3.2), is noted in [55, Sec. 7.2.2].

In [10], the spectral representation is used to obtain a series representation of an
H-fBm on t ∈ [0, 1] of the form

∞∑
n=1

1− cos(xnt)
xn

Xn +
∞∑
n=1

sin(ynt)
yn

Yn,

where (xn)∞n=1, (yn)∞n=1 are particular strictly increasing sequences of constants
and (Xn)∞n=1, (Yn)∞n=1 are independent sequences of independent, mean-zero normal
random variables with particular variances dependent on n. A so-called Paley-Wiener
expansion with a similar form is derived in [11, Cor. 8.2].

A second class of spectral-domain representations of fBm are those given by
wavelet expansions (eg. [36, Thm. 2], [52, Thm. 8.2.7]), but the theory of wavelets is
beyond the scope of this thesis.

3.2 Transformations
Transformation formulae for fractional Brownian motions are representations in which,
for arbitrarily chosen Hurst parameters H,K ∈ (0, 1), an H-fBm is represented as a
function of a K-fBm. Two of the previously introduced representations have been
generalised to transformation formulae, stated below.

Both generalisations make use of stochastic integration with respect to an fBm.
There are several approaches to defining such integrals, see [37, Ch. 1-2] for a
comprehensive overview. The integrals that appear in Theorems 3.5 and 3.6 are
(fractional) Wiener integrals, the construction of which is beyond the scope of this
thesis. The reader is pointed to [20, Sec. 4] or the previous reference for details.

We now state the two transformation formulae. The first, a generalisation of the
Mandelbrot-van Ness representation, was proved in [49, Thm. 1].
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Theorem 3.5 (Mandelbrot-van Ness transformation). Let H,K ∈ (0, 1), and (BK
t )t∈R

be a K-fBm. If
∗
BH,K
t = ∗

cH,K

∫
R

(
(t− s)H−K+ − (−s)H−K+

)
dBK

s , (3.7)

where the constant

∗
cH,K = 1

Γ(H −K + 1)

(
Γ(2H + 1) sin(πH)
Γ(2K + 1) sin(πK)

) 1
2

,

then (
∗
BH,K
t )t∈R is an H-fBm.

The second, an analogous generalisation of the Molchan-Golosov representation,
was proved in [20, Thm. 5.1].

Theorem 3.6 (Molchan-Golosov transformation). Let H,K ∈ (0, 1), and (BK
t )t∈R>0

be a K-fBm. If

B̂H,K
t = ĉH,K

∫ t

0
(t− s)H−K2F1

(
1−K −H,H −K, 1 +H −K, s− t

s

)
dBK

s , (3.8)

where the constant

ĉH,K = 1
Γ(H −K + 1)

(
2H Γ(H + 1/2)Γ(3/2−H)Γ(2− 2K)
2K Γ(K + 1/2)Γ(3/2−K)Γ(2− 2H)

) 1
2

,

then (B̂H,K
t )t∈R>0 is an H-fBm.



Chapter 4

The Muravlev representation

Here, we investigate four aspects of the Muravlev representation of fractional Brownian
motion (Theorem 3.3). They are (i) its derivation, (ii) the smoothness of the random
field Zβ

t in β, (iii) the Markov property of the function-valued process (Z ·
t)t∈R>0 , and

(iv) the emergence of long-range dependence.

4.1 Derivation
Muravlev [43] only provides a sketch of the derivation for his representation. Here we
present it in more detail, drawing on a key integral form for the analytic continuation
of the gamma function mentioned in [18, Rem. 3.6].

Lemma 4.1. For τ ∈ R>0 and H ∈ (0, 1/2)∪ (1/2, 1) we have the following formulae.

τH−
1/2Γ(1/2−H) =


∫ ∞

0
β−

1/2−He−τβ dβ, if H ∈ (0, 1/2),∫ ∞
0

β−
1/2−H

(
e−τβ − 1

)
dβ, if H ∈ (1/2, 1).

(4.1)

Proof. We do each case separately.
For H ∈ (0, 1/2), the integral on the right-hand side converges because the integrand

is O(β−1/2−H) as β ↘ 0 and O(e−τβ) as β → ∞. The left-hand side arises via the
substitution u = βτ and, since 1/2 − H > 0, the standard integral definition of
the gamma function. Note that this result can also be thought of as expressing the
function τ 7→ τH−1/2 as the Laplace transform of the function β 7→ β−1/2−H/Γ(1/2−H).

Now to H ∈ (1/2, 1). The integral on the right-hand side converges because the
integrand is O(β1/2−H) as β ↘ 0 and O(β−1/2−H) as β →∞. The integral definition
of Γ(x) does not converge for x < 0, but the definition can be extended via the
identity xΓ(x) = Γ(x+ 1). In particular, for x ∈ (−1, 0) one has

Γ(x) = 1
x

Γ(x+ 1) = 1
x

∫ ∞
0

uxe−u du

= 1
x

([
−ux(e−u − 1)

]∞
u=0

+
∫ ∞

0
xux−1(e−u − 1) du

)
=
∫ ∞

0
ux−1(e−u − 1) du,

using integration by parts. Each of these integrals converges, as per the comments
above. Again, substituting u = βτ into the integral on the right-hand side of (4.1),

20
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we see that∫ ∞
0

β−
1/2−H

(
e−βτ − 1

)
dβ = τH−

1/2
∫ ∞

0
u(1/2−H)−1

(
e−u − 1

)
du

= τH−
1/2Γ(1/2−H).

We can now proceed to the derivation of the Muravlev representation.

Proof of Theorem 3.3. Start with Theorem 3.1, the Mandelbrot-van Ness representa-
tion. For t ∈ R>0,

∗
BH
t = ∗

cH

∫
R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dBs

= ∗
cH

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dBs + ∗

cH

∫ t

0
(t− s)H−1/2 dBs

=



cH

∫ 0

−∞

[∫ ∞
0

β−
1/2−H(e−β(t−s) − eβs) dβ

]
dBs

+cH
∫ t

0

[∫ ∞
0

β−
1/2−He−β(t−s) dβ

]
dBs, if H ∈ (0, 1/2),

cH

∫ 0

−∞

[∫ ∞
0

β−
1/2−H(e−β(t−s) − eβs) dβ

]
dBs

+cH
∫ t

0

[∫ ∞
0

β−
1/2−H

(
e−β(t−s) − 1

)
dβ
]
dBs, if H ∈ (1/2, 1).

The final equality follows from Lemma 4.1 and the identity ∗
cH = cHΓ(1/2−H), which

holds because
B(1/2 +H, 1/2−H) = Γ(1/2 +H)Γ(1/2−H)

Γ(1) ,

and Γ(1) = 1. Each of the integrals in the final expression converges, as per comments
in the proof of Lemma 4.1. Using a stochastic Fubini theorem (see [29, Thm. 5.15])
to interchange the order of integration and defining,

Zβ
t :=

∫ t

−∞
e−β(t−s) dBs, (4.2)

we get

B
H

t =


cH

∫ ∞
0

β−
1/2−H(Zβ

t − Zβ
0 ) dβ, if H ∈ (0, 1/2) ,

cH

∫ ∞
0

β−
1/2−H(Zβ

t − Zβ
0 −Bt) dβ, if H ∈ (1/2, 1) ,

which is the Muravlev representation.

4.2 The random field Zβ
t

The core stochastic object appearing in the Muravlev representation is the Gaus-
sian random field Zβ

t = (Zβ
t )t∈R>0,β∈R>0 . A portion of a sample surface is shown

in Figure 4.1. Here we prove that, for each t ∈ R>0, sample paths of the one-
dimensional slice (Zβ

t )β∈R>0 are smooth. We then show that, when viewed as an
infinite-dimensional Ornstein-Uhlenbeck process, (Z ·

t)t∈R>0 is Markov, and compute
its transition probabilities.
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Figure 4.1: The random field Zβt sampled on the grid: t = 0.01(k − 1) for k ∈ N62001,
and β = 0.05m for m ∈ N6400. The vertical cross-sections of the surface parallel to the t
axis are Ornstein-Uhlenbeck processes, and hence rough. The vertical cross-sections parallel
to the β axis are smooth Gaussian processes with covariance EZαt Z

β
t = (α+β)−1. Variance

of the random field approaches infinity as β ↘ 0 and zero as β →∞. Note that the process
was started in stationarity as per (4.2), though in this particular sample, it is difficult to
distinguish from an initial value of Z ·

0 ≡ 0. The code used to generate the sample can be
found in the appendix.

4.2.1 Smoothness in β

We start with a prerequisite lemma, adapted from [13, Thm. 2.27].

Lemma 4.2 (differentiation under integral). For −∞ 6 a < b 6∞, let

f : S× (a, b)→ R

be a function such that f(·, x) : S→ R is integrable and measurable for all x ∈ (a, b).
If ∂x f exists and further there exists an integrable function g : S→ R such that

|∂x f(s, x)| 6 g(s), for all x ∈ (a, b), s ∈ S,

then
∫

S f(s, x) ds is differentiable in x and

∂x

∫
S
f(s, x) ds =

∫
S
∂x f(s, x) ds .

Proof. Fix x ∈ (a, b). For any real sequence (hn)∞n=1 such that hn → 0 as n→∞, we
have ∂x f(s, x) = limn→∞ fn(s), where

fn(s) := f(s, x+ hn)− f(s, x)
hn

.

The functions fn are compositions of measurable functions so are themselves measur-
able. Additionally, fn(s)→ ∂x f(s, x) pointwise for all s ∈ S and the inequality

|fn(s)| 6 sup
y∈(a,b)

∣∣∣∂y f(s, y)
∣∣∣ 6 g(s)
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holds by assumption. Thus, applying the dominated convergence theorem (DCT), we
see that ∂x f(s, x) is integrable in s, so ∂x

∫
S f(s, x) ds exists and is given by

∂x

∫
S
f(s, x) ds = lim

n→∞

1
hn

[∫
S
f(s, x+ hn) ds−

∫
S
f(s, x) ds

]
= lim

n→∞

∫
S
fn(s) ds DCT=

∫
S
∂x f(s, x) ds .

Theorem 4.1 (smoothness of Zβ
t in β). For any k ∈ N and any fixed t ∈ R>0, the

derivative ∂kβ Z
β
t exists and is continuous in β.

Proof. By Theorem 2.3 (Itô’s formula),

d(eβ·B·)t = βeβtBt ds+eβt dBt .

So, multiplying the corresponding integral equation with terminals
∫ t
−∞ by e−βt, we

see that Zβ
t can be rewritten as a Lebesgue integral:

Zβ
t =

∫ t

−∞
eβ(s−t) dBs

=
[
eβ(s−t)Bs

]t
s=−∞

−
∫ t

−∞
βeβ(s−t)Bs ds

= Bt −
∫ t

−∞
βeβ(s−t)Bs ds .

In the last equality, we used the law of the iterated logarithm (LIL) for Bm (see
eg. [42, Thm. 5.1]), which implies that Bs = O(|s|) almost surely as |s| → ∞.

Let k ∈ N be arbitrary. The above integrand is smooth in β so ∂kβ βeβ(s−t)Bs exists.
Since Bt is almost surely continuous and |Bt/t|

a.s.−−→ 0 as |t| → ∞ (a consequence of
the LIL), there exists a random time Tk ∈ (−∞, 0) such that for all β ∈ R>0,

gk(s) :=
∂

k
β βe

β(s−t)|s|, if s ∈ (−∞, Tk),
∂kβ βe

β(s−t)
(
supu∈[Tk,t] |Bu|

)
, if s ∈ [Tk, t],

is an integrable upper bound for
∣∣∣∂kβ βeβ(s−t)Bs

∣∣∣ on s ∈ (−∞, t]. Further, as a function
of s, ∂k−1

β βeβ(s−t)Bs is integrable and measurable a.s. on (∞, t]. So the conditions of
Lemma 4.2 are satisfied for all k ∈ N and, if n ∈ N, we have

∂nβ Z
β
t = ∂nβ Bt − ∂nβ

∫ t

−∞
βeβ(s−t)Bs ds

= − ∂β . . . ∂β︸ ︷︷ ︸
n derivatives

∫ t

−∞
βeβ(s−t)Bs ds

= −
∫ t

−∞
∂nβ βe

β(s−t)Bs ds .

For the last equality, we repeatedly used Lemma 4.2 and dominating function gk+1 to
move the k-th (k ∈ N6n) partial derivative under the integral. Thus ∂kβ Z

β
t exists for

all k ∈ N and, since ∂k+1
β Zβ

t also exists, ∂kβ Z
β
t is continuous in β.
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4.2.2 As a Markov process

Multivariate Ornstein-Uhlenbeck process

The matrix exponential eA for a matrix A ∈ Rm×m is defined (as per [54]) by

eA :=
∞∑
n=0

An

n! . (4.3)

In this thesis, we will work with vectors as column vectors, and use ·′ to denote
the transpose of a vector or matrix. If A = diag((a1, . . . , am)′), the m×m diagonal
matrix with elements of the column vector (a1, . . . , am)′ along the diagonal, then (4.3)
implies that eA = diag((ea1 , . . . , eam)′). This is the only case we will encounter.

For arbitrary m ∈ N, let β = (β1, . . . , βm)′ ∈ Rm
>0, and Zβ

t = (Zβ1
t , . . . , Z

βm
t )′.

Following [34], we can describe (Zβ
t )t∈R>0 as a multivariate Ornstein-Uhlenbeck

process with the following integral representation:

Zβ
t = e−diag(β)tZβ

0 +
∫ t

0
e−diag(β)(t−u)1m dBu

=
∫ t

−∞
e−diag(β)(t−u)1m dBu .

The vector integrals are evaluated element-wise. Generalising the univariate case,
(Zβ

t )t∈R>0 can also be shown to be the unique strong solution of the following multi-
variate SDE:

dZβ
t = −diag(β)Zβ

t dt+1m dBt, for t ∈ R>0, Z
β
0 =

∫ 0

−∞
e−diag(β)(t−u)1m dBu .

The transition densities for (Zβ
t )t∈R>0 will be required shortly, so we compute

them here. Fix arbitrary s, t ∈ R>0 such that s < t. Then

Zβ
t =

∫ t

−∞
e−diag(β)(t−u)1m dBu

= e−diag(β)(t−s)
∫ s

−∞
e−diag(β)(s−u)1m dBu +

∫ t

s
e−diag(β)(t−u)1m dBu

= e−diag(β)(t−s)Zβ
s +

∫ t

s
e−diag(β)(t−u)1m dBu .

(4.4)

The second term is a vector of Itô integrals with a shared Bm driver (Bu)u∈[s,t], so
can be defined as a limit of a sequence of linear transformations of the increments
of Bu. Each element in the sequence, being a linear transformation of a vector of
independent Bm increments, is multivariate Gaussian, and so the limiting vector of
integrals will also be multivariate Gaussian. As such, the conditional distribution
of Zβ

t |Zβ
s is fully specified by its mean vector and covariance matrix. Using (4.4),

the mean is given by

µt|s,Zβ
s

:= E
[
Zβ
t |Zβ

s

]
= E

[
e−diag(β)(t−s)Zβ

s |Zβ
s

]
+ E

[∫ t

s
e−diag(β)(t−u)1m dBu |Zβ

s

]
= e−diag(β)(t−s)Zβ

s + 0m = e−diag(β)(t−s)Zβ
s ,
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and the covariance matrix by

Σt|s,Zβ
s

:= E
[(
Zβ
t − E

[
Zβ
t |Zβ

s

]) (
Zβ
t − E

[
Zβ
t |Zβ

s

])′
|Zβ

s

]
= E

[(∫ t

s
e−diag(β)(t−u)1m dBu

)(∫ t

s
e−diag(β)(t−u)1m dBu

)′
|Zβ

s

]

=
[
E
[(∫ t

s
e−βi(t−u) dBu

)(∫ t

s
e−βj(t−u) dBu

)]]m
i,j=1

=
[∫ t

s
e−βi(t−u)e−βj(t−u) du

]m
i,j=1

=
[

1− e−(βi+βj)(t−s)

βi + βj

]m
i,j=1

.

In the second-last equality, we used the standard expression for the covariance of Itô
integrals, which can be derived from the Itô isometry using the polarisation identity.
Thus, Zβ

t |Zβ
s ∼ MVN(µt|s,Zβ

s
,Σt|s,Zβ

s
) and has the corresponding transition density:

ft|s,Zβ
s
(z) = 1

(2π)m/2
√

det(Σt|s,Zβ
s
)

exp
{
−1

2(z − µt|s,Zβ
s
)′Σ−1

t|s,Zβ
s
(z − µt|s,Zβ

s
)
}

.

(4.5)
In the limiting case s = t, set fs|s,Zβ

s
(z) := δZβ

s
(z), where δZβ

s
is the m-dimensional

Dirac delta function positioned at Zβ
s .

Formalisation of (Z ·
t)t∈R>0 as a Markov process

Denote by Ω the underlying sample space, equipped with the σ-algebra F generated
by the standard Bm (Bt)t∈R on the real line, and the filtration Ft = σ((Bs)s6t).

Consider the process Z = (Z ·
t)t∈R>0 where, for each t ∈ R>0, Zt is the function

Z ·
t : R>0 × Ω→ R mapping (β, ω) 7→ Zβ

t (ω). Theorem 4.1 implies Zβ
t is continuous

in β, so for fixed ω, (Z ·
t)t∈R>0 takes values in C(0,∞), the set of continuous functions

on (0,∞). The notation Zt(β) := Zβ
t will be used to emphasise that Z ·

t is a function
of β, with the dependence on ω implicit.

Let E be the σ-algebra on C(0,∞) generated by so-called cylindrical subsets
which have the form

m⋂
j=1
{h ∈ C(0,∞) : h(βj) ∈ Ej} , where βj ∈ R>0, Ej ∈ B(R) ∀ j ∈ N6m, (4.6)

and m ∈ N can depend on the subset. The vector β = (β1, . . . , βm)′ ∈ Rm
>0 we will

call the grid of the cylinder.
Following Definition 2.5, we wish to construct a family of probability measures

{Ps,g | s ∈ R>0, g ∈ C(0,∞)} on F such that (Z,Ft, Ps,g) is a Markov process. For
brevity, we will restrict ourselves to constructing such measures Ps,g only on sets of the
form {Z ·

t ∈ E} for some E ∈ E , and adopt the shorthand Pt|s,g(E) := Ps,g({X ·
t ∈ E}).
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As a starting point, we will explicitly define a narrower class of probability measures
P βt|s,g on cylinders with the grid β.

Fix arbitrary s ∈ R>0, g ∈ C(0,∞), and let E be a cylinder with grid β. Using
the multivariate Ornstein-Uhlenbeck framework, the probability P βt|s,g(E) can be
defined as follows:

P βt|s,g(E) (4.6)= P βt|s,g

 m⋂
j=1
{h ∈ C(0,∞) : h(βj) ∈ Ej}


:= P

({
Zβ
t ∈ E1 × · · · × Em | Zβ

s = gβ
})

=
∫
E1×···×Em

ft|s,gβ(z) dz

(4.7)

where gβ = (g(β1), . . . , g(βm))′ and ft|s,gβ is the transition density for the finite-
dimensional multivariate Ornstein-Uhlenbeck process described in Equation 4.5.

Having defined the probability measure P βt|s,g on the finite-dimensional cylinders
of the form (4.6), we can extend it to all sets E ∈ E using the Kolmogorov extension
theorem (KET). The following statement is modelled on that given in [47, Thm.2.1.5].

Theorem 4.2 (Kolmogorov extension theorem). Let B be an arbitrary index set, and
{P b | b = (b1, . . . , bm)′ ∈ Bm,m ∈ N} be a family of probability measures on Rm (m
depends on the measure) satisfying the following two consistency conditions:

i. For all sets Ei ∈ B(R), i ∈ N6m, indices b ∈ Bm, m ∈ N, and permutations π
of {1, . . . ,m},

P (b1,...,bm)′(E1 × · · · × Em) = P (bπ(1),...,bπ(m))′(Eπ(1) × · · · × Eπ(m)).

ii. For all sets Ei ∈ B(R), i ∈ N6m, and indices b ∈ Bm+k, m, k ∈ N,

P (b1,...,bm)′(E1 × · · · × Em) = P b
(
E1 × · · · × Em × Rk

)
.

Then there exists a probability space (Ω,F , P ) and a stochastic process X : B×Ω→ R
such that for all indices b = (b1, . . . , bm)′ ∈ Bm and sets Ei ∈ B(R), i ∈ N6m,

P (Xb1 ∈ E1, . . . , Xbm ∈ En) = P β(E1 × · · · × Em).

For arbitrary fixed s, t ∈ R>0, g ∈ C(0,∞), the set {P βt|s,g : β ∈ Rm,m ∈ N} is a
family of probability measures on Rm. From the explicit formula (4.7), it is clear that
the family satisfies condition (i) because of the invariance of the integral and density
under permutations of ((βi, Ei))mi=1, and (ii) because integrating the density over R
with respect to particular βj simply returns the marginal density for the remaining
elements of β. Thus, by the Kolmogorov extension theorem, there exists a probability
measure Pt|s,g and process—namely (Zβ

t )β∈R>0—with finite dimensional distributions
specified by P βt|s,g, for each β ∈ Rm.

We can now prove the following.
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Theorem 4.3. (Z,Ft, Ps,g) is a Markov process.
The proof requires that the four conditions in Definition 2.5 are satisfied. Condi-

tions M1-M3 are satisfied, but quite technical. In the interest of readability, only
the proof of the Markov property M4 is included in full, while brief comments are
made about M1-M3.
M1 The random variable Zt : Ω → C(0,∞) is defined as a measurable function

of (Bs)s6t, which is Ft-measurable by the definition of Ft.

M2 Using the explicit form (4.7) for P βt|s,g(E) on cylinders E with grid β, the
function for general E can be constructed by taking limits and compositions of
measurable functions.

M3 The event {Z ·
s ∈ C(0,∞) \ g} is a subset of the event E := {Z1

s ∈ R \ {g(1)}},
and the probability Ps,g(E) = 0 because it is defined as an integral over a Dirac
delta function on a domain which excludes the point at which the integrand
has mass.

Proof of the Markov property (M4). Take arbitrary g ∈ C(0,∞), set E ∈ E , and
times r, s, t ∈ R>0 such that r 6 s 6 t. Since

Ps,Z·
s
({Z ·

t ∈ E}) = Pr,g({Z ·
t ∈ E|Zs}),

the condition M4 that
Pr,g({Z ·

t ∈ E|Fs}) = Ps,Z·
s
({Z ·

t ∈ E}),

is equivalent to the condition that Z ·
t|Fs

d= Z ·
t|Z ·

s under all probability measures Pr,g.
We note that the cylinders form a π-system, and recall that probability measures

that agree on a π-system will agree on the σ-algebra generated by that π-system.
Thus it is sufficient to show that Pr,g({Z ·

t ∈ E|Fs}) = Pr,g({Z ·
t ∈ E|Z ·

s}) for all
cylinders E. On such cylinders with (arbitrary) grid β, this is equivalent to showing
that Zβ

t |Fs
d= Zβ

t |Zβ
s .

This can be shown expediently using characteristic functions together with (4.4).

E
[
eix
′Zβ
t

∣∣∣∣Fs] = E
[
exp

{
ix′

(
e−diag(β)(t−s)Zβ

s +
∫ t

s
e−diag(β)(t−u)1m dBu

)} ∣∣∣∣Fs]
= exp

{
ix′

(
e−diag(β)(t−s)Zβ

s

)}
E
[
exp

{
ix′

(∫ t

s
e−diag(β)(t−u)1m dBu

)} ∣∣∣∣Fs]
= exp

{
ix′

(
e−diag(β)(t−s)Zβ

s

)}
E
[
exp

{
ix′

(∫ t

s
e−diag(β)(t−u)1m dBu

)} ∣∣∣∣Zβ
s

]
= E

[
exp

{
ix′

(
e−diag(β)(t−s)Zβ

s +
∫ t

s
e−diag(β)(t−u)1m dBu

)} ∣∣∣∣Zβ
s

]
= E

[
eix
′Zβ
t

∣∣∣∣Zβ
s

]
.

For the third equality, we used the fact that the random variable in the expecta-
tion is independent of both Fs and Zβ

s . Characteristic functions completely specify
their corresponding distributions, so Zβ

t |Fs
d= Zβ

t |Zβ
s , and hence the probabil-

ity Pr,g({Z ·
t ∈ E|Fs}) = Ps,Z·

s
({Z ·

t ∈ E}) for all E ∈ E .
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4.3 Long-range dependence

For each β ∈ R>0, the Ornstein-Uhlenbeck process (Zβ
t )t∈R>0 is short-range dependent.

How does long-range dependence arise in B
H
t , a weighted integral over short-range

dependent processes?
In this section this phenomenon is investigated by looking at the presence of

long-range dependence in the integrand(s) of BH

t for fixed β ∈ R>0, and in the limits
as β ↘ 0 and β →∞. As a starting point, we restrict our analysis to the random
field Zβ

t . For this we will need two useful facts.
First, let us compute the covariance function of the random field Zβ

t . For parame-
ters α, β ∈ R>0 and s, t ∈ R>0 such that s 6 t, the covariance of Zα

s with Zβ
t is given

by

EZα
s Z

β
t = E

[∫ s

−∞
e−α(s−u) dBu

∫ t

−∞
e−β(t−u) dBu

]
= e−αs−βtE

[∫ s

−∞
eαu dBu

(∫ s

−∞
eβu dBu +

∫ t

s
eβu dBu

)]
= e−αs−βtE

[∫ s

−∞
eαu dBu

∫ s

−∞
eβu dBu

]
= e−αs−βt

∫ s

−∞
e(α+β)u du = 1

α + β
e−β|t−s|.

(4.8)

Second, we will require the value of a constant appearing in a mean value theorem-
type formula for the function x 7→ e−βx. Specifically, for all x ∈ R,

e−βx − e−β(x−1)

x− (x− 1) = −βe−β(x−θβ) =⇒ θβ = 1
β

[
log(eβ − 1)− log(β)

]
. (4.9)

Note that θβ is independent of x, strictly increasing as a function of β and takes
values in the interval [0, 1].

Now, using the initial equation in (4.9) three times, the autocovariance of the
increment process (Zβ

n − Z
β
n−1)n∈N can be obtained:

γZβ(n) = E
[
(Zβ

n+1 − Zβ
n )(Zβ

1 − Z
β
0 )
]
− E[Zβ

n+1 − Zβ
n ]E[Zβ

1 − Z
β
0 ]

= EZβ
n+1Z

β
1 − EZβ

nZ
β
1 − EZβ

n+1Z
β
0 + EZβ

nZ
β
0

(4.8)= 1
2β

[
e−βn − e−β(n−1) −

(
e−β(n+1) − e−βn

)]
(4.9)= −1

2βe
β(2θβ−n−1).

We can now see that
∞∑
n=1
|γZβ(n)| = 1

2βe
(2θβ−1)β

∞∑
n=1

(e−β)n = 1
2β

e2(θβ−1)β

1− e−β <∞, for all β ∈ R>0,

which implies (Zβ
t )t∈R>0 is short-range dependent for all β ∈ R>0 (Definition 2.4).

Since the increments of (Zβ
t )t∈R>0 are pairwise jointly Gaussian, the limiting increments
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as β ↘ 0 and β →∞ will also be pairwise jointly Gaussian with covariances given
by the limit of the covariances of the approaching sequence of increments. Thus, the
limiting process as β ↘ 0 is short-range dependent because γZ0(n) = 0 for all n ∈ N.
The limiting process as β →∞ is also short-range dependent, because

lim
β→∞

γZβ(n) = lim
β→∞

−1
2βe

β(2θβ−n−1) = 0, for all n ∈ N.

On the other hand, the autocovariance function for the increments of the integrand
in B

H

t , which we will denote γH,β is, in the case H ∈ (0, 1/2),

γH,β(n) = E
[
β−

1/2−H(Zβ
n+1 − Zβ

n )β−1/2−H(Zβ
1 − Z

β
0 )
]

= β−2H−1γZβ(n) = −1
2β
−2Heβ(2θβ−n−1).

A longer calculation is required in the case H ∈ (1/2, 1), but the resulting expression
differs only by a factor of −1. That is,

|γH,β(n)| = 1
2β
−2Heβ(2θβ−n−1), for all H ∈ (0, 1/2) ∪ (1/2, 1), β ∈ R>0.

It is easily checked that γH,β is absolutely summable for all β ∈ R>0, so the process
specified by the Muravlev integrand is short-range dependent for all such β. Similarly,
the autocovariance γH,β(n)→ 0 as β →∞ for all n ∈ N, so the corresponding limiting
process is also short-range dependent. However,

lim
β↘0
|γH,β(n)| =∞, for all H ∈ (0, 1/2) ∪ (1/2, 1), n ∈ N,

so the limiting process will be long-range dependent for all such H.
These calculations suggest that the long-range dependence of the Muravlev integral

representation of fBm originates from the portion of the integral near β = 0. This fits
with intuition, because such β correspond to Ornstein-Uhlenbeck processes (Zβ

t )t∈R>0

which have only small speeds of mean reversion. In contrast, for large β, the processes
(Zβ

t )t∈R>0 experience much stronger mean-reversion, and so will ‘forget’ their past
more rapidly.

Of course, fBm is only long-range dependent for H ∈ (1/2, 1), so the extra weight
given to the processes (Zβ

t )t∈R>0 with small β parameters by the factor of β−1/2−H in
the Muravlev representation appears to play a crucial role in determining whether
the integral process (BH

t )t∈R>0 displays long-range dependence. However, it is not
clear how to compute the autocovariance function γ

B
H .

Existing approximation schemes for fBm often fail to capture long-range depen-
dence (see, for instance, [8, Sec. 2.2.3]). If the long-range dependence of the Muravlev
representation for H ∈ (1/2, 1) can indeed be isolated to the portion of the integral
near β = 0, then it may be possible to construct a process approximating fBm which
displays the correct long-range dependence behaviour by using the truncated interval

cH

∫ b

0
β−

1/2−H(Zβ
t − Zβ

0 −Bt) dβ, for some b ∈ R>0.



Chapter 5

Helix transformations

Using the general definition of a helix stated in [23, Ch. 10.5], a fractional Brownian
motion can be viewed as a helix in L2. This fact is not new — Kolmogorov acknowl-
edged it by referring to fBm as the ‘Wiener spiral’ [25]. Nonetheless, it provides
useful geometric intuition for the process. In this chapter we demonstrate that the
transformation of an fBm from one Hurst parameter to another can be viewed as a
manipulation of this helix.
Definition 5.1 (helix). LetH be a real or complex Hilbert space and X : [0,∞)→ H
be a parametrised curve in H. We say X is a helix in H if for all s,t ∈ [0,∞),

‖X(t)−X(s)‖2
H = ψ(|t− s|),

for some function ψ. That is, if ‖X(t)−X(s)‖H depends only on |t−s|. The function
ψ is called the screw function.
Definition 5.2 (helical process). A helical process is a stochastic process which is a
helix in L2.

Since ‖BH
t − BH

s ‖L2 =
√

E|BH
t −BH

s |2 = |t− s|H , the fBm (BH
t )t>0 is a helical

process with screw function ψ(·) = ·2H .
By definition, a process is helical if and only if it has weakly stationary increments.

The form of the screw function can play a role in determining other distributional
properties. For example, in the context of Gaussian processes, we have the following
theorem.
Theorem 5.1. Let (Xt)t>0 be a Gaussian helical process with mean zero and X0 = 0.
The process Xt is self-similar if and only if its screw function ψX(τ) = aτ b for some
a, b ∈ R>0.
Proof. First assume (Xt)t>0 is self similar. Then for arbitrary c ∈ R>0, s, t ∈ R>0,

ψ2
X(c(t− s)) = E[(Xct −Xcs)2] = E[(cbXt − cbXs)2] = c2bψ2

X(t− s),

and taking t− s = 1 we see that ψX(c) = ψX(1)cb, the required form.
The reverse direction follows because, assuming the screw function has the required

form, we have
E[(Xct −Xcs)2] = ψ2

X(c(t− s))
= c2ba2(t− s)2b

= c2bψ2
X(t− s) = E[(cbXt − cbXs)2].

30
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Now take s = 0, and use the polarisation identity together with the weakly stationary
increments property that E[(Xt −Xs)2] = E[X2

t−s] to recover the covariance functions
for (Xct)t∈R>0 and (cbXt)t∈R>0 . That they are the same, together with the fact that
both are mean-zero Gaussian processes, implies (Xct)t∈R>0

d= (cbXt)t∈R>0 , so (Xt)t∈R>0

is self-similar.

Though proved independently, the above theorem is a variation on the result
that a self-similar Gaussian process with stationary increments is an fBm, see [52,
Def. 2.6.2].

Further discussion of helices in the context of stochastic processes can be found
in Masani [33], along with references to earlier work by Wiener, Schoenberg, von
Neumann and Kolmogorov.

5.1 Discrete time
In this section we review how the increments of an fBm with Hurst parameter H may
be transformed into the increments of an fBm with Hurst parameter K 6= H by using
the Cholesky decomposition of relevant covariance matrices, and then prove that this
transformation is equivalent to geometrically manipulating a discretised helix.

5.1.1 Transformation via Cholesky factors
We say a matrix L = [`k,j]nk,j=1 ∈ Rn×n is lower triangular if all entries strictly above
the major diagonal are zero. That is, if `k,j = 0 for all k < j. The set of elements
corresponding to k > j are the lower triangular elements. Recall the following
theorem.

Theorem 5.2 (Cholesky decomposition). If matrix A ∈ Rn×n is symmetric and
positive definite, then there exists a unique lower triangular matrix L ∈ Rn×n with
positive diagonal entries such that A = LL′.

A proof can be found in [14, Thm. 4.2.7]. If A = [ak,j]nk,j=1, the elements of its
Cholesky factor L = [`kj]nk,j=1 can be computed using the following two formulae.

`k,k =

√√√√ak,k − k−1∑
i=1

`2
k,i, for k ∈ N6n, (5.1)

`k,j = 1
`j,j

ak,j − j−1∑
i=1

`k,i`j,i

 , for j ∈ N<k. (5.2)

Two rudimentary algorithms are based on these formulae [44, Sec. 3.1.5]. The
Cholesky-Crout algorithm first computes L1,1 and proceeds column-by-column, the
Cholesky-Banachiewicz algorithm also starts at L1,1 but proceeds row-by-row. Due to
the large number of square root operations required, both algorithms are quite slow.
However, in the context of decomposing the covariance matrix of a random vector of
fbm increments, we will see that they have an elegant geometric interpretation.
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Theorem 5.3. Let H ∈ (0, 1), and the random vector BH be the first n adjacent
length-∆ increments of an H-fBm. That is, for an H-fBm (BH

t )t∈R>0,

BH =
(
BH

(1), . . . ,B
H
(n)

)′
:=
(
BH
k∆ −BH

(k−1)∆

)n
k=1

.

Choose any K ∈ (0, 1) \ {H}. There exists a lower triangular matrix LK←H such that
the elements of LK←HBH d= BK are the corresponding increments of a K-fBm.
Proof. We will construct LK←H . The vector BH is a multivariate normal random
vector with mean 0n and covariance matrix ΣH = [σ2

H(k, j)]nk,j=1, where

σ2
H(k, j) = E

[
BH

(k)B
H
(j)

]
= ∆2H

2
(
|k − j − 1|2H + |k − j + 1|2H − 2|k − j|2H

)
is the covariance for the increments described. From the Mandelbrot-van Ness repre-
sentation of fBm in terms of standard Bm, it can be seen that no linear combination
of the elements of BH will be degenerate, because each of the disjoint increments of
BH
t can be written as a sum which includes noise term which is independent of all

preceding increments. Thus, ΣH will be non-singular and (strictly) positive definite.
Let Z ∼ MVN(0n, In) and LH←Z be the Cholesky decomposition of ΣH . Then it

holds that BH d= LH←ZZ. Recall that the determinant of a lower triangular matrix is
the product of the entries on its major diagonal, and that the inverse of a non-singular
lower triangular matrix is also lower triangular. By Theorem 5.2, LH←Z has positive
diagonal entries, so has lower triangular inverse LZ←H := L−1

H←Z . Finally let LK←Z
be the Cholesky decomposition of ΣK . Then

LK←ZLZ←HB
H d= LK←ZLZ←HLH←ZZ = LK←ZZ

d= BK

so LK←H := LK←ZLZ←H is the desired matrix.

Discretised helices
Due to the fractal nature of fBm sample paths, they cannot be simulated with perfect
resolution but only on a finite set of time parameter values. What helical properties
are preserved in such a discrete-time process?

The angle in L2 between two random variables X and Y is the inverse cosine of
their correlation, because the identity 〈x,y〉 = ‖x‖‖y‖ cos θ yields

θL2(X, Y ) := arccos
(
〈X, Y 〉L2

‖X‖L2‖Y ‖L2

)
= arccos

(
EXY√

EX2EY 2

)
.

Let (Xt)t>0 be a mean-zero Gaussian, self-similar helical process with X0 = 0.
Observe Xt at discrete times {k∆}k∈N for some ∆ > 0. From Theorem 5.1 and the
polarisation identity we see that

EXsXt = 1
2
(
EX2

s + EX2
t − E(Xt −Xs)2

)
= a2

2
(
s2b + t2b − |t− s|2b

)
.

(5.3)
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Thus the covariance between the observed increments
E[(Xk∆ −X(k−1)∆)(Xj∆ −X(j−1)∆)]

= EXk∆Xj∆ − EXk∆X(j−1)∆ − EX(k−1)∆Xj∆ + EX(k−1)∆X(j−1)∆

= a2∆2b

2
(
|k − j − 1|2b + |k − j + 1|2b − 2|k − j|2b

) (5.4)

depends only on the distance |k−j|, and consequently the L2 angle between increments
also depends only on |k − j|. Perhaps a discrete, self-similar, helical process can be
characterised by the property that the L2 angle between disjoint increments depends
only on the time-distance between them.

All the assumptions in the above computations hold for fBm. Figure 5.1 shows
how the angles between fBm increments vary as a function of the Hurst parameter H.
Intuitively, disjoint increments are parallel for H = 1 and orthogonal at H = 1/2, but
there is some subtle behaviour as H ↘ 0.

0 1/2 1
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2

0

1

H

ρ
(H

;ε
)

Correlation

ε = 0.01
ε = 0.00

0 1/2 1
0

π
2

2π
3

H

θ(
H

;ε
)

L2 angle

ε = 0.01
ε = 0.00

Figure 5.1: The correlation and L2 angle between two increments of an H-fBm, as a
function of H. The increments have unit length and are separated by distance ε. The
relevant correlation is given by ρ(H; ε) = 1

2

(
ε2H + (2 + ε)2H − 2(1 + ε)2H

)
, and angle by

θ(H; ε) = arccos ρ(H; ε). Note that not all correlations ρ ∈ [−1, 1] can be obtained, and for
the ε = 0 case, when the increments share an end point, ρ9 0 as H ↘ 0.

To transform the increments BH of an H-fBm into those of a K-fBm, we will see
that it is sufficient to rotate all the increments in L2 such that all pairwise L2-angles
are as required for increments of a K-fBm, and then rescale the increments so that
each has the required L2-norm (standard deviation). The following definitions, taken
from [19, Def. 1.2,1.18], establish a structure that will facilitate this transformation.
Definition 5.3 (Gaussian Hilbert space). A linear subspace G of L2

R(Ω,F ,P) is a
Gaussian inner product space if each element of G is Gaussian and has mean zero.
If G is complete, it is called a Gaussian Hilbert space.
Remark. The closure in L2 of every Gaussian inner product space is a Gaussian
Hilbert space, so we will only work with Gaussian Hilbert spaces hereafter.
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Definition 5.4. A Gaussian Hilbert space indexed by a (real) Hilbert space H is a
Gaussian Hilbert space G together with a specific linear isometry ξ : H → G which
maps h 7→ ξh.

For our purposes, we take Gn = span({Z1, . . . , Zn}) to be our Gaussian Hilbert
space, where Z = (Z1, . . . , Zn)′ ∼ MVN(0n, In), and span(. . . ) denotes the closure of
the linear span of a set of vectors. The space Gn can be indexed by Rn, with the
isometry ξ : Rn → Gn given by

ξ(x1,...,xn) := x1Z1 + · · ·+ xnZn.

Remark. Since Z1, . . . , Zn form an orthonormal basis of Gn, each vector x ∈ Rn is the
coordinate vector for the corresponding random variable ξx ∈ Gn.

Isometries preserve angles, so instead of working with random variables in Gn we
can instead work with their vector-valued indices in Rn. This perspective allows us
to reinterpret the Cholesky factor LH←Z found in proof of Theorem 5.3. Namely, the
rows of this matrix are the coordinates of the increments of an H-fBm in Gn.

Let Ln = [lk,j]nk,j=1 ∈ Rn×n be a lower triangular matrix such that lk,j = 1 for
all k > j. Then LnLH←ZZ is a random vector of the values of an H-fBm on a grid
t = k∆, for k ∈ N6n. Accordingly, the rows of LnLH←Z are the coordinates in Gn
of the values an H-fBm takes on the same grid. The dimensionality n will be large
for any reasonable approximation to a continuous-time fBm, so the discrete helix
cannot be visualised directly. However, we can gain a sense for it by performing
dimensionality reduction via principal component analysis. Briefly, the method used
is:

1◦ Treat the rows from the matrix LnLH←Z as a sample of points in Rn. Subtract
their mean to centre the sample.

2◦ Compute the normalised eigenvectors of the empirical covariance matrix of the
sample.

3◦ Project the sample onto the 3-dimensional subspace spanned by eigenvectors
corresponding to the three largest eigenvalues, ie. onto the three most significant
principal components. The images of the points under this projection form a
new sample in R3.

4◦ Plot the new sample, interpolating between points corresponding to adjacent
points in the trajectory.
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Figure 5.2 shows the result of this approach for n = 1000, ∆ = 1/n, and a range
of Hurst parameter values.
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Figure 5.2: The projection onto the first three principal components of the sequence of
elements in R1000 (the rows of LnLH←Z) that index the random process values in G1000

taken by an fBm at points t = 0.001k, for k ∈ N61000. Both plots are of the same objects,
from different viewpoints. Curves are plotted for

H ∈ {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 0.9999}.

All sequences of indices for H � 1 show helical structure. The helix becomes more tightly
coiled as H ↘ 0—corresponding to obtuse angles between increments when H ∈ (0, 1/2)—
and relaxes into a line as H ↗ 1—corresponding astute (and decreasing) angles between
increments for such H.

5.1.2 Transformation via helix manipulation
Given that each Cholesky factor in the proof of Theorem 5.3 is unique, it follows that
a geometric approach—where each increment of an H-fBm is sequentially rotated
and rescaled such that the resulting random vector forms the increments of a K-fBm—
must produce the same result. Here we give a more precise statement and explicit
proof of this fact.

Let
◦
LK←H ∈ Rn×n be the linear transformation representing the above-described

geometric procedure.

Theorem 5.4. The matrix
◦
LK←H is equal to LK←H , the matrix constructed in the

proof of Theorem 5.3 via Cholesky factors.

Proof. We will construct
◦
LK←H (

◦
L, hereafter) by geometric arguments and show that

it is equal to LK←H . Without loss of generality we can assume that H = 1/2, because
all other cases can be constructed as the composition of a transformation of this form
with the inverse of a transformation of this form.

Let e1, . . . , en be the standard orthonormal basis of Rn corresponding to our
orthonormal basis ξei = Zi, i ∈ N6n of Gn. We wish to construct a matrix

◦
L such
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that
◦
LB

1/2 d=
◦
L(∆1/2Z) ∼ MVN(0n,ΣK).

The i-th element of the column vector ∆1/2Z is the element of Gn indexed by the
vector ∆1/2ei ∈ Rn. Since we are modifying each increment sequentially, based on
conditions involving only the preceeding increments,

◦
L will be lower-triangular, and

we will construct it row by row. The setup is as follows.
Denote by `′i the i-th row of

◦
L. Initialise

◦
L0 ∈ Rn×n to be the zero matrix.

For k ∈ N6n, denote by
◦
Lk the partially constructed matrix

◦
L of the form

◦
Lk =

[
Λk 0
0 0

]
=



`′1
. . .
`′k
0
. . .
0


(5.5)

where Λk ∈ Rk×k is a top-left square submatrix of
◦
L.

We require the vector ∆1/2`k ∈ Rn to be the vector index of the element of Gn
which satisfies both ‖ξ∆1/2`k

‖L2 = ∆K and

θL2

(
ξ∆1/2`i

, ξ∆1/2`k

)
= arccos

(
σ2
K(i, k)

σK(i)σK(k)

)
, for i ∈ N<k. (5.6)

But ξ is an isometry and σK(i) = ∆K for all i ∈ N6n, so the conditions in (5.6) can
be rewritten in terms of the standard Euclidean inner product as

〈`i, `k〉 = σ2
K(i, k)

∆ , for i ∈ N<k. (5.7)

For k = 1, this condition is easily satisfied by setting `1 = ∆K−1/2e1. If we denote the
elements of `i by `i = (`i,1, . . . , `i,n), then, conditioned on knowing `i for all i ∈ N<k,
the elements `k,1, . . . , `k,k−1 of `k can be calculated by solving the following system of
linear equations which codifies the conditions (5.7):

Λk

 `k,1
. . .
`k,k−1

 = 1
∆

 σ2
K(k, 1)
. . .

σ2
K(k, k − 1)

 .
Because Λk is lower triangular, the solutions have a recursive closed form given by

`k,j = 1
`j,j

σ2
K(k, j)

∆ −
j−1∑
i=1

`k,i`j,i

 , for j ∈ N<k,

and the diagonal element `k,k can then be calculated by

`k,k =

√√√√σ2
K(k, k)

∆ −
k−1∑
i=1

`2
k,i, for k ∈ N6n,
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which simply ensures that ‖ξ∆1/2`k
‖L2 = ∆K . The second formula also works for our

initial value of `1,1. But then, these are exactly the standard formulae 5.1 and 5.2 used
for computing the Cholesky decomposition of ∆−1ΣK . Thus,

◦
L is lower triangular

and equal to the Cholesky decomposition of ∆−1ΣK , or equivalently,
◦
L = ∆−1/2LK←Z

where LK←Z is the Cholesky decomposition of ΣK .
But by the construction of LK←1/2 in the proof of Theorem 5.3, we know that

LK←1/2 = LK←ZLZ←1/2 = LK←Z( 1
∆1/2

In) = 1
∆1/2

LK←Z .

Thus
◦
LK←1/2 = LK←1/2.

5.2 Continuous time
It is plausible that the linear transformation described in the previous section may
approach some limiting, continuous-time transformation as the spacing of the grid
on which the fBm is discretised approaches zero. In this section, the discrete-time
transformation developed in the previous section is numerically compared with the
continuous-time Molchon-Golosov representation (Theorem 3.2), which has a similar
structure.

Molchan-Golosov representation
Let T ∈ R>0 and (Bt)t∈[0,T ] be a standard Bm on the compact time interval [0, T ].
Recall that for t ∈ [0, T ], the Molchan-Golosov representation (B̂H

t )t∈[0,T ] of an H-fBm
is given by

B̂H
t =

∫ t

0
GH(s, t) dBs, (5.8)

where the integrand

GH(s, t) = ĉH(t− s)H−1/2
2F1

(
1/2−H,H − 1/2, H + 1/2,

s− t
s

)
depends only on the parameter of integration s and the upper terminal t. Thus
(5.8) transforms a standard Bm on the compact time interval [0, T ] to an H-fBm on
the same interval, and for every t ∈ [0, T ], the value BH

t of the fBm depends only
on (Bs)s∈[0,t]. This is a ‘lower triangular’ structure similar that of the discrete-time
transformation constructed using Cholesky factors in Theorem 5.3.

To compare the two, we need to discretise the integral process in (5.8). Taking
T = 1, constants n,m ∈ N and ∆ := 1/n, we will use the following grid of points on
the unit interval.

m increments

0
1
n

2
n

n−1
n 1
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For the remainder of this thesis, we will assume that (Bt)t∈R>0 is the standard Bm
driver of (B̂H

t )t∈R>0 , and adopt the notation:

B̂
H =

(
B̂H
k∆ − B̂H

(k−1)∆

)n
k=1

, and B =
(
Bj∆/m −B(j−1)∆/m

)nm
j=1

.

Note that the increments B of the standard Bm are taken on a finer grid than those
of the resulting integral transformation, B̂H . The Itô integral in equation 5.8 is
defined as the limit of the Itô integrals of simple functions, so

B̂
H

(k) =
∫ k∆

0
GH(s, k∆) dBs−

∫ (k−1)∆

0
GH(s, (k − 1)∆) dBs

≈
km∑
j=1

GH

((j − 1)∆
m

+ ∆δj1
2m , k∆

)
B(j)

−
(k−1)m∑
j=1

GH

((j − 1)∆
m

+ ∆δj1
2m , (k − 1)∆(k − 1)

)
B(j)

=
km∑
j=1

[
GH

((j − 1)∆
m

+ ∆δj1
2m , k∆

)

−GH

((j − 1)∆
m

+ ∆δj1
2m , (k − 1)∆

)
1(j 6 (k − 1)m)

]
B(j),

and thus B̂H can be approximated by a linear transformation of B. Specifically, if
we construct a matrix L̂H←1/2 = [ ̂̀k,j]k∈N6n,j∈N6mn ∈ Rn×mn such that

̂̀
k,j = 1(j 6 km)

[
GH

((j − 1)∆
m

+ ∆δj1
2m , k∆

)
−GH

((j − 1)∆
m

+ ∆δj1
2m , (k − 1)∆

)
1(j 6 (k − 1)m)

]
,

for k ∈ N6n, j ∈ N6mn,

then B̂H
≈ L̂H←1/2B. In the m = 1 case, L̂H←1/2 is square, lower triangular, and

analogous to the discrete time transformation matrix LH←1/2.
The extra term (∆δj1)/2m, where δj1 is Kronecker’s delta, is required to avoid

the case when the first parameter of GH is zero, which would require division by
zero. This inelegant fix means that the sum is no longer of the form used in the
construction of the Itô integral, but because the extra term is only non-zero for j = 1,
the discrepancy is negligible in the limit as n→∞.

5.2.1 Comparison of transformation matrices

In this section, we will assume that m = 1, so that the matrices L̂H←1/2 and LH←1/2

have the same dimensions. It does not appear easy to analytically compare the
elements of these matrices. The elements of LH←1/2 are defined recursively as functions
of the elements of ΣH via (5.1) and (5.2). In constrast, the elements of L̂H←1/2 are
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defined as linear combinations of particular values of the Gauss hypergeometric
function. Nonetheless, numerical investigations suggest that they appear to approach
each other in the limit as n→∞.

Figure 5.3 and Table 5.1 describe the distribution of the absolute relative differences
between the lower triangle (non-zero) matrix elements of L̂H←1/2 and LH←1/2 for
several values of n and H. That is, for L̂H←1/2 = [ ̂̀k,j]nk,j=1 and LH←1/2 = [`k,j]nk,j=1,
the distribution of elements in the set{∣∣∣∣∣`k,j − ̂̀

k,ĵ̀
k,j

∣∣∣∣∣ for j, k ∈ N6n and k > j

}
.

We emphasise that the elements in such sets are deterministic.
For all H, both the mean and standard deviation this set of absolute relative

differences between the non-zero elements of the two transformation matrices appears
to approach zero as n→∞, though the convergence is faster for larger H.

5.2.2 Comparison of simulated paths
A second approach to comparing the transformation via Cholesky factors with the
approximation to the Molchan-Golosov integral representation is to compare, for a
given B, their resulting trajectories. Allowing B to be random, we can then generate
a sample of trajectory discrepancies.

In particular, we are interested in whether the approximate sample trajectories
generated via the Cholesky factor method approach the ‘true’ H-fBm B̂H

t generated
by the Molchan-Golosov representation.

It is not possible to simulate a Bm in continuous time, so we cannot compute the
values taken by B̂H

t exactly. Nonetheless, since we are viewing it as a candidate for a
limit, it is important that we approximate LnB̂H as well as possible. Unfortunately,
B̂H
t is a Volterra process—not an Itô process—because the integrand GH depends

on the upper terminal of integration t. As a consequence, standard approaches to
approximating Itô integral processes, such as the Euler-Maruyama method, cannot
be used.

A rudimentary approximation to LnB̂H is given by

LnL̂H←1/2B.

Here, the L̂H←1/2 has the dimensions n× nm and B has dimensions nm× 1. We can
improve the approximation by increasing m and, moreover, estimating the limiting
value of the vector LnL̂H←1/2B as m→∞.

Fix m = 4, and define the matrix

Dnm̃ = [dk,j]k∈N
6nm̃

,j∈N6nm ∈ Rnm̃×nm, where dkj = 1((k − 1)m̃ < j 6 km̃),

to be a generalised diagonal matrix which ‘pools’ the increments in B such that
Dnm̃B has dimensions nm̃× 1. Then, for a given B, we can compute

LnL̂n,miH←1/2D
nmiB, for mi = 2i−1, i ∈ N63,
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a sequence of increasingly close approximations to LnB̂H corresponding to m1 = 1,
m2 = 2 and m3 = 4. In the above expression, the transformation matrix L̂n,miH←1/2 is
labelled with an mi to make clear that it, too, depends both on n and mi, the latter
of which is substituted for m in the definition (5.2).

Using this length-3 sequence of approximations, we can employ Richardson’s
extrapolation to estimate the limit as mi →∞. To do so, we assume that there exists
an expression of the following form for each approximate process value of B̂H

t in the
vector LnL̂n,miH←1/2DnmiB:

(LnL̂n,miH←1/2D
nmiB)(k) = B̂H

k/n + a1

mi

+ a2

m2
i

+O( 1
m3
i

), for mi ∈ N, k ∈ N6n. (5.9)

Then, ignoring the asymptotic error term O(1/m3
i ), we can solve the system of three

linear equations described by (5.9) for the unknowns a1, a2 and B̂H
k/n, the last of

which gives an estimate B̂H
k/n,Richardson for the true value B̂H

k/n which is approached as
mi →∞. The notation

B̂
H

R = (B̂H
k/n,Richardson − B̂H

(k−1)/n,Richardson)nk=1, B̂H
0,Richardson := 0,

will be used to refer to the vector of the limiting increments.
It is not clear whether the assumption (5.9) holds, but in simulations the sequence

of approximate trajectories constructed via Cholesky factors (details below) does
appear to approach LnB̂H

R marginally more quickly than it does LnL̂n,mH←1/2B.
Take n = 1000. Having constructed an approximation to LnB̂H , we can now set

up the sequence of approximated trajectories computed using Cholesky factors that
are speculated to approach it. In our simulations, these correspond to the sequence
of vectors:

LniLniH←1/2D
niB, ni = 125× 2i−1, i ∈ N64.

Each such vector gives the values of an H-fBm at a grid of ni points within the unit
interval, where n1 = 125, n2 = 250, n3 = 500 and n4 = 1000. The transformation
LniH←1/2 is labelled with a ni to make clear that it, too, depends on ni, which is
substituted for n in the construction given in the proof of Theorem 5.3. In other
words, each vector LniLniH←1/2DniB gives the values of an H-fBm on the grid t = k/ni,
k ∈ N6ni , constructed from the vector of Bm increments B using Cholesky factors.

Note that the length of this vector will be different for each ni, so we will take
the final element in each vector, corresponding to the value of an H-fBm at t = 1, to
be the single point at which we compare trajectories. Differences in the size of each
simulated increment tend to accumulate, so the discrepancy at t = 1 is generally the
largest observed over the interval t ∈ [0, 1].

Table 5.2 describes the distribution of the sets{
|(LnB̂H

R )(n) − (LniLniH←1/2D
niB)ni | for 20 realisations of B

}
,

for a range of values of H and the sequence of ni introduced above. That is, the
distribution of absolute differences between the simulated value of an H-fBm at time
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t = 1 transformed from B using the Cholesky method, and the approximate value of
the B̂H

1 driven by the same Bm.
For most values of H, both the mean and standard deviation of the absolute errors

appear to decrease towards zero as the number of increments nνi increases, though
convergence slows as H nears 0 or 1, and was not observable in samples of this size
for H ∈ {0.01, 0.99}. Given that convergence can be seen for all other values of H,
this lack of convergence appears likely to be an artefact of the relatively small sample
size. The slowing of the rate of convergence as H diverges from 1/2 may intuitively
be expected due to the increased roughness of the process for H near 0 and, for H
near 1, the fact that near-straight trajectories will tend to compound errors.

An example of the sample trajectories obtained using, respectively, the Cholesky
transformation and the Richardson extrapolation approximation to the Molchan-
Golosov integral, is presented in Figure 5.4, overlaid on the shared Bm driver.

These numerical results suggest that the discrete-time transformation via Cholesky
factors converges to the continuous-time Molchan-Golosov integral representation,
and thus that the analogous geometric intuition for the transformation (namely, the
contortion of the fBm helix) applies in the continuous-time case.

Code used for the numerical results in this section can be found in the appendix.
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Chapter 6

Conclusion

This thesis aimed to build insight into two integral representations of fractional
Brownian motion.

First, the derivation of the Muravlev representation [43, Cor. 1] from the Mandelbrot-
van Ness representation was presented in detail. The random Gaussian field Zβ

t ap-
pearing in the integrand was proven to be smooth in the β direction. A multivariate
Ornstein-Uhlenbeck process was introduced and used to define transition probabilities
for the C(0,∞)-valued process (Zt)t∈R>0 explicitly on cylindrical subsets of C(0,∞).
The Kolmogorov extension theorem was used to extend the probability measures
to the cylindrical σ-algebra. In this setting, we proved that (Z ·

t)t∈R>0 satisfies the
Markov property. Viewing the integrands in the Muravlev representation as stochastic
processes in time, long-range dependence was shown to arise in the limit as β ↘ 0,
but not as β → ∞. Consequently, it was conjectured that one could construct
an fBm approximation scheme based on the Muravlev representation that would
exhibit long-range dependence by truncating the integral to the interval [0, b] for some
finite b ∈ R>0.

Second, the perspective of fBm as a helix in L2 was introduced, and it was noted
that the L2-angles between disjoint increments of an H-fBm are acute for H ∈ (0, 1/2)
and obtuse for H ∈ (1/2, 1). It was conjectured that, for H,K ∈ (0, 1), one could
transform increments of an H-fBm to increments of a K-fBm by iteratively rotating
and rescaling each increment in an appropriate space. Finite-dimensional Gaussian
Hilbert spaces indexed by Rn were introduced for this purpose. It was shown that
such a geometric procedure is mathematically equivalent to performing the same
transformation of the random vector of increments via premultiplication by a lower-
triangular matrix constructed using Cholesky factors, thus proving the conjecture.
It was then observed that the Molchan-Golosov integral representation for fBm has
an analogous lower-triangular structure. Numerical experiments suggested that the
discrete-time transformation via Cholesky factors converges to the continuous-time
Molchan-Golosov transformation, in terms of both the transformation operator and
the resulting trajectories. Such convergence indicates that the Molchan-Golosov
transformation can be understood geometrically as a constriction or relaxation of the
fBm helix.
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Appendix

Simulation of Zβ
t

A collection of Wolfram Language functions for the simulation of the random field Zβ
t

from the Muravlev representation. These were used to generate the sample surface
plotted in Figure 4.1.

CovarianceMatrix[min_, max_, step_] := Table[

1/(i + j),

{i, min, max, step},

{j, min, max, step}

];

ξ[min_, max_, step_] := RandomVariate[

 = MultinormalDistribution[

Table[0, Ceiling[(max - min)/ step]],

CovarianceMatrix[min + step, max, step]],

1][[1]];

Plotξ[min_, max_, step_] := ListLinePlot[

Transpose[{Range[min + step, max, step], ξ[min, max, step]}]

];

Z[{tmin_, tmax_, tstep_}, {bmin_, bmax_, bstep_}] := RandomFunction[

ItoProcess[

{-Range[bmin + bstep, bmax, bstep]*

Table[z[i], {i, 1, Length[Range[bmin + bstep, bmax, bstep]]}],

(* ⅆt coefficients *)

Table[1, Length[Range[bmin + bstep, bmax, bstep]]]}, (* ⅆBt coefficients *)

{Table[z[i], {i, 1, Length[Range[bmin + bstep, bmax, bstep]] }],

ξ[bmin, bmax, bstep]}, (* state parameter, initial state *)

t (* time parameter *)

],

{tmin, tmax, tstep}

];
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PlotZ[{tmin_, tmax_, tstep_}, {bmin_, bmax_, bstep_} ] := ListPlot3D[

Flatten[

Transpose[

{Table[#[[1]], Length[Range[bmin + bstep, bmax, bstep]]],

Range[bmin + bstep, bmax, bstep], #[[2]] }

] & /@ Normal[Z[{tmin, tmax, tstep}, {bmin, bmax, bstep}] ] [[1]],

1],

AxesLabel → {"t", "β", Subsuperscript[Z, t, β]},

Mesh → None,

PlotTheme -> "Monochrome",

LabelStyle → Opacity[0]

];

ExportZ[{tmin_, tmax_, tstep_}, {bmin_, bmax_, bstep_}] := Export["Z.csv",

N[Flatten[

Transpose[

{Table[#[[1]], Length[Range[bmin + bstep, bmax, bstep]]],

Range[bmin + bstep, bmax, bstep], #[[2]] }

] & /@ Normal[Z[{tmin, tmax, tstep}, {bmin, bmax, bstep}] ] [[1]],

1]],

"csv"

]

Animateξ[{tmin_, tmax_, tstep_}, {bmin_, bmax_, bstep_}] := Animate[

ListLinePlot[

(Transpose[{Range[bmin + bstep, bmax, bstep], #[[2]]}] & /@

Normal[Z[{tmin, tmax, tstep}, {bmin, bmax, bstep}] ][[1]]) [[

Round[(t - tmin)/ tstep] + 1]],

PlotRange → {{bmin, bmax}, {-10, 10}}

],

{t, tmin, tmax, tstep},

AnimationRunning → False

];

Exportξ[{tmin_, tmax_, tstep_}, {bmin_, bmax_, bstep_}] := Export[

"betawave.gif",

Table[

ListLinePlot[

(Transpose[{Range[bmin + bstep, bmax, bstep], #[[2]]}] & /@

Normal[Z[{tmin, tmax, tstep}, {bmin, bmax, bstep}] ][[1]]) [[n]],

PlotRange → {{bmin, bmax}, {-10, 10}}] ,

{n, 1, Length[Range[tmin, tmax, tstep]]}

]

]



47

Computation of helix transforms
A collection of Wolfram Language functions for the computation and simulation of
the numerical results presented in Section 5.2.

The function CholeskyIncrementTransform returns LnH←1/2, CholeskyIncrements
returns LnH←1/2DnB, CholeskyProcessTransform returns LnLnH←1/2, and the function
CholeskyProcess returns LnLnH←1/2DnB. Analagously, MgIncrementTransform re-
turns L̂n,mH←1/2, MgProcess returns LnL̂n,mH←1/2DnmB and MgProcessRichardson returns
LnB̂H

R .

#### covariance of fBm increments ####

R[i_, j_, Δ_, H_] :=
Δ2 H

2
Abs[i - j - 1]2 H

+ Abs[i - j + 1]2 H
- 2 Abs[i - j]2 H



IncrementCovariance[n_, Δ_, H_] := Table[R[i, j, Δ, H], {i, 1, n}, {j, 1, n}]

#### (standard) Brownian motion increments on [0,1] ####

BmIncrements[n_, Δ_] := RandomReal[NormalDistribution[0, Sqrt[Δ]], n]

PoolIncrements[B_, n_, m_, maxm_] :=

Table[Sum[B[[i]], {i, (j - 1)*(maxm / m) + 1, j*(maxm / m)}], {j, 1, n* m}]

#### parameter setup ####

n = 1000;

ms = {1, 2, 4};

maxm = 4;

B = BmIncrements[n* maxm, N[1/(n* maxm)]];

H = .8;

#### Cholesky transformation ####

CholeskyIncrementTransform[n_, H_] :=

(N[Sqrt[n]])* Transpose[CholeskyDecomposition[IncrementCovariance[n, N[1/ n], H]]]

CholeskyIncrements[n_, m_, maxm_, H_, B_] :=

CholeskyIncrementTransform[n, H].PoolIncrements[B, n, m, maxm]

CholeskyProcessTransform[n_, H_] :=

LowerTriangularize[Table[1, {i, 1, n}, {j, 1, n}]].CholeskyIncrementTransform[n, H]

CholeskyProcess[n_, m_, maxm_, H_, B_] :=

CholeskyProcessTransform[n, H].PoolIncrements[B, n, m, maxm]
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### Molchan-Golosov transformation ###

MgConstant[H_] := Sqrt
2* H* Gamma[H + .5]* Gamma[1.5 - H]

Gamma[2 - 2 H]
*

1

Gamma[H + .5]

MgIntegrand[H_, s_, t_] := (t - s)H-.5
* Hypergeometric2F1.5 - H, H - .5, H + .5,

s - t

s


MgCoeff[k_, j_, m_, Δ_, H_] := Piecewise[{{

0,

j > k* m

}, {

MgIntegrand[H, N[Δ/ 2], Δ* k* m],

j ⩵ 1 && k ⩵ 1

}, {

MgIntegrand[H, N[Δ/ 2], Δ* k* m] - MgIntegrand[H, N[Δ/ 2], Δ*(k - 1)* m],

j ⩵ 1 && k > 1

}, {

MgIntegrand[H, Δ*(j - 1), Δ* k* m],

j > (k - 1)* m && j ≤ k* m

}, {

MgIntegrand[H, Δ*(j - 1), Δ* k* m] - MgIntegrand[H, Δ*(j - 1), Δ*(k - 1)* m],

j ≤ (k - 1)* m

}}]

MgIncrementTransform[n_, m_, H_] :=

MgConstant[H]* Table[MgCoeff[k, j, m, N[1/(n* m)], H], {k, 1, n}, {j, 1, n* m}]

MgIncrements[n_, m_, maxm_, H_, B_] :=

MgIncrementTransform[n, m, H].PoolIncrements[B, n, m, maxm]

MgProcessTransform[n_, m_, H_] :=

LowerTriangularize[Table[1, {i, 1, n}, {j, 1, n}]].MgIncrementTransform[n, m, H]

MgProcess[n_, m_, maxm_, H_, B_] :=

MgProcessTransform[n, m, H].PoolIncrements[B, n, m, maxm]

MgProcesses[n_, ms_, maxm_, H_, B_] :=

Table[MgProcess[n, ms[[j]], maxm, H, B], {j, 1, Length[ms]}]

RichardsonMatrix[k_] := {

{1, -1, -1},

{1, -1/(2^k), -1/(2^(k + 1))},

{1, -1/(4^k), -1/(4^(k + 1))}

}

RichardsonLimit[seq_, k_] := LinearSolve[RichardsonMatrix[k], seq][[1]]

MgProcessRichardsonQuick[n_, seqs_, k_] :=

Table[RichardsonLimit[seqs[[j]], k], {j, 1, n}]

MgProcessRichardson[n_, ms_, maxm_, H_, B_, k_] :=

MgProcessRichardsonQuick[n, Transpose[MgProcesses[n, ms, maxm, H, B]], k]
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Lévy process. Bernoulli 10, 1 (2004), 97–120.

[35] McKeague, I. W., and Sen, B. Fractals with point impact in functional linear regression.
Annals of Statistics 38, 4 (2010), 2559.

[36] Meyer, Y., Sellan, F., and Taqqu, M. S. Wavelets, generalized white noise and fractional
integration: the synthesis of fractional Brownian motion. Journal of Fourier Analysis and
Applications 5, 5 (1999), 465–494.



bibliography 51
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[56] Taqqu, M. S., et al. Benôıt Mandelbrot and fractional Brownian motion. Statistical Science
28, 1 (2013), 131–134.

[57] Weisstein, E. W. Gamma function. From MathWorld—A Wolfram Web Resource. Accessed:
2019-05-15.

[58] Weisstein, E. W. Reflection relation. From MathWorld—A Wolfram Web Resource. Accessed:
2019-05-15.

[59] Williams, C. K., and Rasmussen, C. E. Gaussian processes for machine learning. The
MIT Press 2, 3 (2006), 4.

[60] Yaskov, P. A maximal inequality for fractional Brownian motions. Journal of Mathematical
Analysis and Applications 472, 1 (2019), 11–21.


	Introduction
	Preliminaries
	The space L2
	Process properties
	Fractional Brownian motion
	Itô calculus

	Literature review
	Representations
	Time domain
	Spectral domain

	Transformations

	 The Muravlev representation
	Derivation
	The random field Z
	Smoothness in beta
	As a Markov process

	Long-range dependence

	Helix transformations
	Discrete time
	Transformation via Cholesky factors
	Transformation via helix manipulation

	Continuous time
	Comparison of transformation matrices
	Comparison of simulated paths


	Conclusion

