Optimizing Language Models for Argumentative Reasoning

Luke Thorburn and Ariel Kruger

1st International Workshop on Argumentation & Machine Learning
September 2022

Motivation

Background

Inputs

Foundation model

Tasks Data

Optimization

Strategies

Software <u>H</u>ardware

Evaluation

Methods

Automated

Manual

Results

Automated

Manual

Motivation

Background

Inputs

Foundation model

lasks

Data

Optimization

Strategies Software

Hardware

Evaluation

Motho

Automated

Manual

Results

Automated

Manua

Motivation

Background

Inputs

-oundation model

Tasks

Data

Optimization

Strategies

Software

Hardware

Evaluation

Methods

Automated

Manual

Results

Automated

Manual

Conclusion

Australian Government

Office of National Intelligence

Defence Science Institute

AI for Decision-Making Initiative

Motivation

Background

Inputs

Foundation model

Tasks

Data

Optimization

Strategies

Software

Hardware

Evaluation

Methods

Automated

Manual

Results

Automated

Manual

Conclusion

Australian Government

Defence Science Institute

AI for Decision-Making Initiative

"argument processor"

what a word processor is to arbitrary text, an argument processor is to structured argumentation

Motivation

Background

Inputs

Foundation model

Tasks

Data

Optimization

Strategies

Software

Hardware

Evaluation

Methods

Automated

Manual

Results

Automated

Manua Conclusion

Australian Government
Office of National Intelligence

Defence Science Institute

AI for Decision-Making Initiative

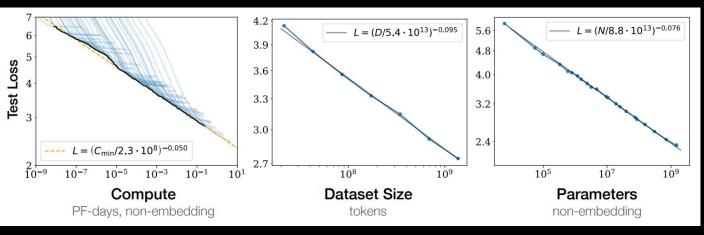
"argument processor"

what a word processor is to arbitrary text, an argument processor is to structured argumentation

Demo: luke-thorburn.github.io/argument-processor/

Introduction Motivation Background **Inputs** Data **Optimization** Hardware **Evaluation** Methods Automated Manual

Manual



From Kaplan et al. Scaling Laws for Neural Language Models (2020).

Motivation Background

Inputs

Foundation model

Tasks Data

Optimization

Strategies Software

Hardware

Evaluation

Automate

Manual

Results

Automated

Manua

Motivation Background

Inputs

Foundation model

Tasks

Data

Optimization

Strategies

Software

Hardware

Evaluation

Methods

Automated

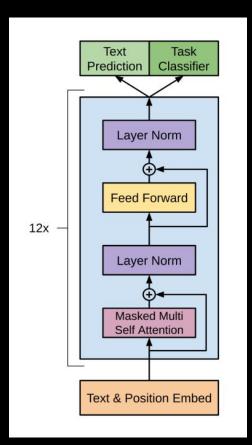
Results

Automated Manual

Conclusion

Foundation Model

- 2.7B parameter version of GPT-Neo.
- "Causal" language model.
- Pretrained on The Pile (800GB corpus).
- Open source.



From Radford et al. *Improving Language Understanding by Generative Pretraining* (2018).

Motivation Background

Inputs

Foundation model

Tasks Data

Optimization

Strategies

Software

Hardware

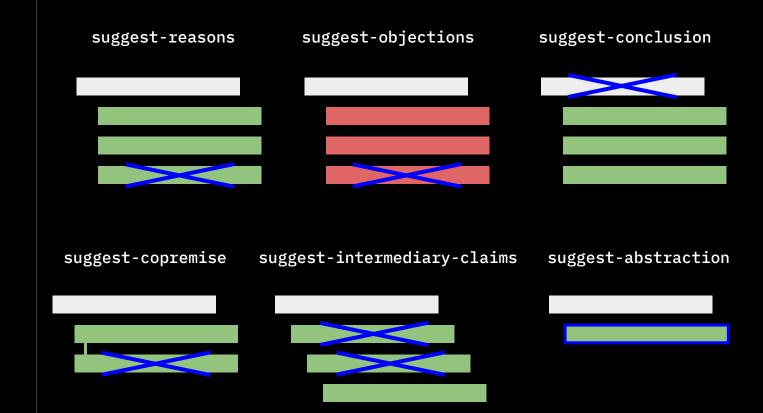
Evaluation

Methods

Automated Manual

Results

Automated Manual



Motivation Background

Inputs

Foundation model

Tasks

Data

Optimization

Strategies

Software

Hardware

Evaluation

Methods

Automated Manual

Results

Automated Manual

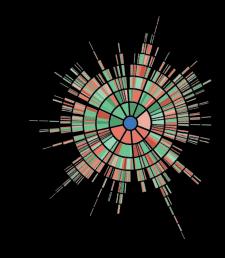
Conclusion

~180,000 claims, ~560 argument maps

Scrape performed by Lenz et al. for *Towards an Argument Mining Pipeline Transforming Texts to Argument Graphs*, Proceedings of COMMA 2020.

EXAMPLE TOPICS

- "Traditional bullfighting should be banned."
- "Climate change can be reversed."
- "Darwinian evolution is philosophy not science."



		Dataset size		
Task	Truncation Depth	Training	Validation	Test
suggest-reasons	4	50,000	10,000	10,000
suggest-objections	4	50,000	10,000	10,000
suggest-conclusion	6	15,250	4,503	4,823
suggest-intermediary-claims	4	29,894	6,514	8,766
suggest-copremise	4	0	0	1,043*
suggest-abstraction	4	0	0	8,766*

Motivation

Background

Inputs

Foundation model

Tasks

Data

Optimization

Strategies

Software

Hardware

Evaluation

Motho

Automated

Manual

Results

Automated

Manua

Motivation

Background

Inputs

Foundation model

Tasks Data

Optimization

Strategies

Software

Hardware

Evaluation

Methods

Automated Manual

Results

Automated Manual

Conclusion

	PROMPT		FINETUNING			
	zero-shot	few-shot	none	soft prompt	bias param.	all param.
Α	~		V			
В		V	V			
С	v			✓		
D	v				V	
Е	V					v

Zero-Shot Prompt

Give a reason why: <TARGET CLAIM>

Reason:

Few-Shot Prompt

List reasons why: <TARGET CLAIM>

Reasons:

- * <REASON 1>
- * <REASON 2>
- * <REASON 3>

×

Inputs

Foundation model

Optimization

Strategies

Software

Hardware

Evaluation

Methods

Manual

Manual

Conclusion

See the paper and shared code for details.

The gist:

4 GPUs, 24 CPUs, 95GB virtual RAM, 184GB conventional RAM, 228 hours

Motivation

Background

Inputs

Foundation model

Tasks

Data

Optimization

Strategies Software

Hardware

Evaluation

Methods

Automated

Manual

Results

Automated

Manual

Motivation Background

Inputs

Foundation model

Tasks

Optimization

Strategies

Hardware

Evaluation

Methods

Automated

Manual

Results

Automated

Manual

Conclusion

Perplexity:

$rac{1}{\mathbf{P}(w_1,w_2,\ldots,w_n)^{1/n}}$

Both for the full text, and the response tokens only.

Motivation Background

Inputs

Foundation model Tasks

Data

Optimization

Strategies Software

Evaluation

Methods

Automated Manual

Results

Automated Manual

Conclusion

Method

- 1. Sample 100 examples from the test set for each task.
- 2. Generate response from each model of length 150 tokens. Tidy.
- 3. Pool with human responses from Kialo, where available. Randomize order.
- 4. Have a rater (blindly) rate each output (human or model-generated) for coherence according to the following rubric.

Rubric

1	Incoherent –	Suggestion (as written) is not relevant or coherent, and there is no insight to be gained from it.
2	Incoherent +	Suggestion (as written) is not relevant or coherent, but the suggestion prompts the user to think of adjacent ideas or suggestions that are relevant and coherent.
3	Coherent –	Suggestion (as written) is relevant and coherent, but some editing is required to be usable.
4	Coherent +	Suggestion (as written) is relevant and coherent, and would be usable as written.

Motivation Background

Inputs

Foundation model Tasks Data

Optimization

Strategies Software Hardware

Evaluation

Methods

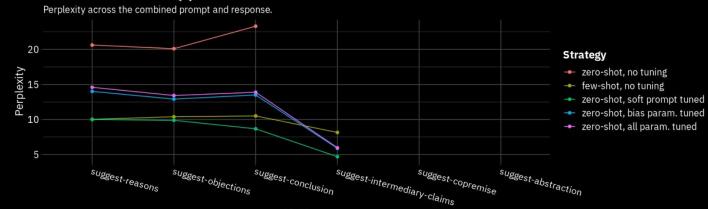
Automated Manual

Results

Automated Manual

Conclusion

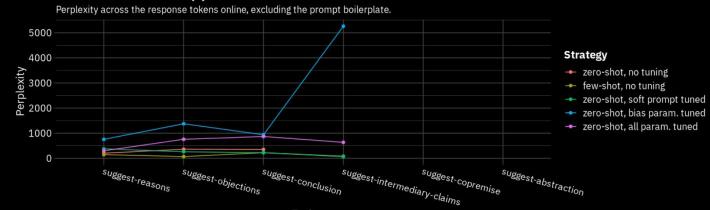
Automated Evaluation (1)



Task

Task

Automated Evaluation (2)



Motivation Background

Inputs

Foundation mode

Data

Optimization

Strategies Software

Evaluation

Methods

Automated Manual

Results

Automated

Manual

Conclusion

Example of **Coherent +**

Claim:

Cultural appropriation is wrong.

Objections:

- Integrating different cultures is one of the main way for cultures to develop themselves.
- People who learn other cultures will become more tolerant, open minded and open to new experiences.

Example of Incoherent -

Claim:

Private schools preserve traditions that are absent, or otherwise impractical to maintain, in the state system.

Objections:

- Given this has never been tried, and no examples are given, there is no reason to assume these traditions cannot be moved to a public system.
- Not all of these traditions are good, and many can perpetuate socio-economic divides far beyond the school system, for example by creating 'old boys clubs'.
- This is a 'we must preserve these traditions for our daughters', rather than a 'it is to our children' argument.

Motivation Background

Inputs

Foundation model Tasks

Optimization

Strategies Software Hardware

Evaluation

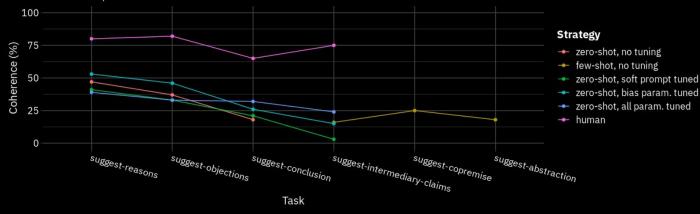
Methods

Automated Manual

Results

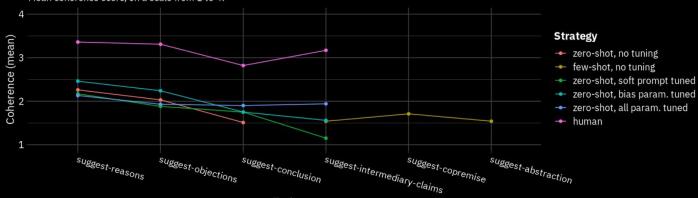
Automated Manual

Conclusion



Manual Evaluation (2)

Mean coherence score, on a scale from 1 to 4.



Task

Motivation Background

Inputs

Foundation model Tasks

Data

Optimization

Strategies Software

Hardware

Evaluation

Methods

Automate Manual

Results

Automated Manual

Conclusion

Models 15-50% coherent, humans 65-82% coherent.

Best optimization strategy depends on task.

Limitations

- Smaller than state of the art
- Some gaps, due to
 - Lack of data
 - Task structure
 - Lack of funds

Future Directions

 Combining statistical and symbolic argumentation methods to improve coherence

Code + Models: github.com/Hunt-Laboratory/language-model-optimization